LD132A272KAB4A [KYOCERA AVX]

Ceramic Capacitor, Multilayer, Ceramic, 200V, 10% +Tol, 10% -Tol, C0G, 30ppm/Cel TC, 0.0027uF, Surface Mount, 1825, CHIP;
LD132A272KAB4A
型号: LD132A272KAB4A
厂家: KYOCERA AVX    KYOCERA AVX
描述:

Ceramic Capacitor, Multilayer, Ceramic, 200V, 10% +Tol, 10% -Tol, C0G, 30ppm/Cel TC, 0.0027uF, Surface Mount, 1825, CHIP

电容器
文件: 总75页 (文件大小:1144K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
A KYOCERA GROUP COMPANY  
AVX  
Surfa c e Mount  
Ce ra m ic Ca pa c itor Produc ts  
Ceramic Chip Capacitors  
Table of Contents  
How to Order - AVX Part Number Explanation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-3  
C0G (NP0) Dielectric  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-7  
U Dielectric  
General Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
Capacitance Range. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9-10  
Designer Kits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
X7R Dielectric  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14-15  
X7S Dielectric  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
X5R Dielectric  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21-22  
Y5V Dielectric  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
MLCC Tin/Lead Termination  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27-31  
Automotive MLCC  
General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32-33  
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34-35  
MLCC with Soft Termination  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36  
Specifications and Test Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37-38  
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39  
Capacitor Array  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Capacitance Range . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41  
Multi-Value Capacitor Array (IPC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Part and Pad Layout Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Low Inductance Capacitors  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44-45  
LICC (Low Inductance Chip Capacitors) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46-47  
IDC (InterDigitated Capacitors). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48-49  
LICA (Low Inductance Decoupling Capacitor Arrays) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50-51  
High Voltage Chips for 600V to 5000V Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52-53  
MIL-PRF-55681/Chips  
Part Number Example (CDR01 thru CDR06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54  
Military Part Number Identification (CDR01 thru CDR06) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55  
Part Number Example (CDR31 thru CDR35) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56  
Military Part Number Identification (CDR31) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57  
Military Part Number Identification (CDR32) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58  
Military Part Number Identification (CDR33/34/35) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59  
Packaging of Chip Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
Embossed Carrier Configuration - 8 & 12mm Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61  
Paper Carrier Configuration - 8 & 12mm Tape . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62  
Bulk Case Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63  
Basic Capacitor Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64  
General Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65-69  
Surface Mounting Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70-73  
1
How to Order  
Part Number Explanation  
Commercial Surface Mount Chips  
EXAMPLE: 08055A101J AT2A  
0805  
5
A
101  
J *  
A
T
2
A
Size  
Voltage  
Dielectric  
A = NP0(C0G)  
C = X7R  
D = X5R  
G = Y5V  
U = U Series  
W = X6S  
Z = X7S  
Capacitance  
2 Sig. Fig +  
No. of Zeros  
Examples:  
100 = 10 pF  
101 = 100 pF  
102 = 1000 pF  
223 = 22000 pF  
224 = 220000 pF M = ±20%  
105 = 1µF  
106 = 10µF  
107 = 100µF  
For values below  
10 pF, use R”  
in place of  
Decimal point, e.g.,  
9.1 pF = 9R1.  
Tolerance  
Failure  
Rate  
A = N/A  
Terminations  
T = Plated Ni  
and Sn  
7 = Gold Plated  
J = Tin/Lead  
Packaging  
Available  
2 = 7" Reel  
4 = 13" Reel  
7 = Bulk Cass.  
9 = Bulk  
Special  
Code  
A = Std.  
(L" x W") 4 = 4V  
B = ±.10 pF  
0201  
0402  
0603  
0805  
1206  
1210  
1812  
1825  
2220  
2225  
6 = 6.3V  
Z = 10V  
Y = 16V  
3 = 25V  
D = 35V  
5 = 50V  
1 = 100V  
2 = 200V  
7 = 500V  
C = ±.25 pF  
D = ±.50 pF  
F = ±1% (10 pF)  
G = ±2% (10 pF)  
J = ±5%  
4 = Automotive  
Contact  
Factory For  
1 = Pd/Ag Term  
Z = Soft  
K = ±10%  
Contact  
Factory For  
Multiples  
Z = +80%, -20%  
P = +100%, -0%  
Termination  
Contact Factory for  
Special Voltages  
F = 63V  
* = 75V  
E = 150V 8 = 400V  
V = 250V  
* B, C & D tolerance for 10 pF values.  
Standard Tape and Reel material (Paper/Embossed)  
depends upon chip size and thickness.  
9 = 300V  
X = 350V  
See individual part tables for tape material type for  
each capacitance value.  
High Voltage Surface Mount Chips  
EXAMPLE: 1808AA271KA11A  
1808  
A
A
271  
K
A
1
1A  
AVX  
Style  
1206  
1210  
1808  
1812  
1825  
2220  
2225  
3640  
Voltage  
Temperature Capacitance Capacitance  
Failure  
Rate  
A=Not  
Termination  
1= Pd/Ag  
T = Plated Ni  
and Sn  
Packaging/Marking  
1A = 7" Reel  
Unmarked  
3A = 13" Reel  
Unmarked  
C = 600V  
A = 1000V  
S = 1500V  
G = 2000V  
W = 2500V  
H = 3000V  
J = 4000V  
K = 5000V  
Coefficient  
A = C0G  
C = X7R  
Code  
Tolerance  
C0G: J = ±5%  
K = ±10%  
(2 significant digits  
+ no. of zeros)  
Examples:  
Applicable  
M = ±20%  
10 pF = 100  
100 pF = 101  
X7R: K = ±10%  
M = ±20%  
9A = Bulk/Unmarked  
1,000 pF = 102  
22,000 pF = 223  
Z = +80%,  
-20%  
220,000 pF = 224  
1 µF = 105  
2
How to Order  
Part Number Explanation  
Capacitor Array  
EXAMPLE: W2A43C103MAT2A  
W
2
A
4
3
C
103  
M
A
T
2A  
Style  
Case  
Size  
1 = 0405  
2 = 0508  
3 = 0612  
Array Number  
of Caps  
Voltage  
6 = 6.3V  
Z = 10V  
Y = 16V  
3 = 25V  
5 = 50V  
1 = 100V  
Dielectric Capacitance Capacitance Failure  
Termination  
Code  
T = Plated Ni  
and Sn  
Packaging &  
Quantity  
Code (In pF)  
2 Sig Digits +  
Number of  
Zeros  
Tolerance  
J = ±5%  
K = ±10%  
M = ±20%  
Rate  
A = NP0  
C = X7R  
D = X5R  
Code  
2A = 7" Reel (4000)  
4A = 13" Reel (10000)  
2F = 7" Reel (1000)  
Low Inductance Capacitors (LICC)  
EXAMPLE: 0612ZD105MAT2A  
0612  
Z
D
105  
M
A
T
2
A
Size  
0306  
0508  
0612  
Voltage  
6 = 6.3V  
Z = 10V  
Y = 16V  
3 = 25V  
5 = 50V  
Dielectric  
C = X7R  
D = X5R  
Capacitance  
Code (In pF)  
2 Sig. Digits +  
Number of Zeros  
Capacitance  
Tolerance  
K = ±10%  
Failure Rate Terminations  
Packaging  
Available  
2 = 7" Reel  
4 = 13" Reel  
Thickness  
See Page 51  
for Codes  
A = N/A  
T = Plated Ni  
and Sn  
M = ±20%  
J = Tin/Lead  
Interdigitated Capacitors (IDC)  
EXAMPLE: W3L16D225MAT3A  
225  
M
W
3
L
1
6
D
A
T
3
A
Capacitance Capacitance  
Code (In pF) Tolerance  
2 Sig. Digits +  
Number of  
Zeros  
Style Case  
Low  
Number  
of  
Terminals  
1 = 8 Terminals  
Voltage Dielectric  
4 = 4V C = X7R  
6 = 6.3V D = X5R  
Z = 10V  
Failure Termination Packaging  
Thickness  
Max. Thickness  
mm (in.)  
Size Inductance  
2 = 0508  
Rate  
T = Plated Ni  
and Sn  
Available  
1=7" Reel  
M = ±20  
A = N/A  
3 = 0612  
3=13" Reel A=0.95 (0.037)  
S=0.55 (0.022)  
Y = 16V  
Decoupling Capacitor Arrays (LICA)  
EXAMPLE: LICA3T183M3FC4AA  
4
A
A
LICA  
3
T
183  
M
3
F
C
# of  
Caps/Part  
1 = one  
2 = two B = Established B = No Bar  
4 = four  
Inspection  
Code  
A = Standard  
Code  
Face  
A = Bar  
Style Voltage  
&
Dielectric Cap/Section Capacitance Height  
5V = 9 D = X5R (EIA Code) Tolerance Code  
M = ±20% 6 = 0.500mm  
P = GMV 3 = 0.650mm H = C4 Solder  
1 = 0.875mm  
BallsLow ESR 8 = 2"x2" Black Waffle  
Termination  
F = C4 Solder  
Reel Packaging  
M = 7" Reel  
Size  
10V = Z T = T55T  
25V = 3 S = High K  
T55T  
Balls- 97Pb/3Sn R = 13" Reel  
6 = 2"x2" Waffle Pack  
Reliability  
Testing  
C = Dot, S55S  
Dielectrics  
5 = 1.100mm P = Cr-Cu-Au  
7 = 1.600mm N = Cr-Ni-Au  
X = None  
Pack  
7 = 2"x2" Waffle Pack  
w/ termination  
facing up  
A = 2"x2" Black Waffle  
Pack  
w/ termination  
facing up  
C = 4"x4" Waffle Pack  
w/ clear lid  
3
C0G (NP0) Dielectric  
General Specifications  
C0G (NP0) is the most popular formulation of the tempera-  
ture-compensating,” EIA Class I ceramic materials. Modern  
C0G (NP0) formulations contain neodymium, samarium and  
other rare earth oxides.  
C0G (NP0) ceramics offer one of the most stable capacitor  
dielectrics available. Capacitance change with temperature  
is 0 ±30ppm/°C which is less than ±0.3% C from -55°C  
to +125°C. Capacitance drift or hysteresis for C0G (NP0)  
ceramics is negligible at less than ±0.05% versus up to  
±2% for films. Typical capacitance change with life is less  
than ±0.1% for C0G (NP0), one-fifth that shown by most  
other dielectrics. C0G (NP0) formulations show no aging  
characteristics.  
The C0G (NP0) formulation usually has a Qin excess  
of 1000 and shows little capacitance or Q” changes with  
frequency. Their dielectric absorption is typically less than  
0.6% which is similar to mica and most films.  
PART NUMBER (see page 2 for complete part number explanation)  
0805  
A
101  
J
A
T
2
A
5
Size  
(L" x W")  
Dielectric  
C0G (NP0) = A  
Capacitance  
Code (In pF)  
2 Sig. Digits +  
Number of  
Zeros  
Capacitance  
Tolerance  
Failure  
Rate  
A = Not  
Applicable  
Terminations  
T = Plated Ni  
and Sn  
Packaging  
2 = 7" Reel  
4 = 13" Reel  
7 = Bulk Cass.  
9 = Bulk  
Special  
Code  
A = Std.  
Product  
Voltage  
6.3V = 6  
10V = Z  
16V = Y  
25V = 3  
50V = 5  
100V = 1  
200V = 2  
500V = 7  
B = ±.10 pF (<10pF)  
C = ±.25 pF (<10pF)  
D = ±.50 pF (<10pF)  
F = ±1% (10 pF)  
G = ±2% (10 pF)  
J = ±5%  
7 = Gold Plated  
Contact  
Factory For  
1 = Pd/Ag Term  
Contact  
Factory  
For  
Multiples  
K = ±10%  
Temperature Coefficient  
Insulation Resistance vs Temperature  
Capacitance vs. Frequency  
10,000  
1,000  
100  
+2  
+1  
Typical Capacitance Change  
Envelope: 0 30 ppm/°C  
+0.5  
0
0
-1  
-2  
-0.5  
0
1KHz  
10 KHz  
100 KHz  
1 MHz  
10 MHz  
-55 -35  
+125  
-15 +5 +25 +45 +65 +85 +105  
40  
60  
80  
100  
0
20  
Frequency  
Temperature °C  
Temperature °C  
Variation of Impedance with Cap Value  
Impedance vs. Frequency  
0805 - C0G (NP0)  
Variation of Impedance with Ceramic Formulation  
Impedance vs. Frequency  
1000 pF - C0G (NP0) vs X7R  
0805  
Variation of Impedance with Chip Size  
Impedance vs. Frequency  
1000 pF - C0G (NP0)  
10 pF vs. 100 pF vs. 1000 pF  
100,000  
10  
10.00  
1206  
0805  
1812  
1210  
X7R  
NPO  
10,000  
1,000  
100  
1.00  
1.0  
0.1  
0.10  
0.01  
10 pF  
10.0  
1.0  
0.1  
100  
1000  
10  
100 pF  
1000 pF  
100  
1000  
10  
Frequency, MHz  
Frequency, MHz  
1
100  
Frequency, MHz  
1000  
10  
4
C0G (NP0) Dielectric  
Specifications and Test Methods  
Parameter/Test  
Operating Temperature Range  
Capacitance  
NP0 Specification Limits  
Measuring Conditions  
Temperature Cycle Chamber  
Freq.: 1.0 MHz ± 10% for cap 1000 pF  
1.0 kHz ± 10% for cap > 1000 pF  
Voltage: 1.0Vrms ± .2V  
-55ºC to +125ºC  
Within specified tolerance  
<30 pF: Q400+20 x Cap Value  
30 pF: Q1000  
Q
100,000Mor 1000M- µF,  
whichever is less  
Charge device with rated voltage for  
60 ± 5 secs @ room temp/humidity  
Charge device with 300% of rated voltage for  
1-5 seconds, w/charge and discharge current  
limited to 50 mA (max)  
Insulation Resistance  
Dielectric Strength  
No breakdown or visual defects  
Note: Charge device with 150% of rated  
voltage for 500V devices.  
Appearance  
Capacitance  
Variation  
No defects  
Deflection: 2mm  
Test Time: 30 seconds  
±5% or ±.5 pF, whichever is greater  
Resistance to  
Flexure  
1mm/sec  
Q
Meets Initial Values (As Above)  
Stresses  
Insulation  
Resistance  
Initial Value x 0.3  
90 mm  
95% of each terminal should be covered  
with fresh solder  
Dip device in eutectic solder at 230 ± 5ºC  
for 5.0 ± 0.5 seconds  
Solderability  
Appearance  
Capacitance  
Variation  
No defects, <25% leaching of either end terminal  
±2.5% or ±.25 pF, whichever is greater  
Dip device in eutectic solder at 260ºC for 60  
seconds. Store at room temperature for 24 ± 2  
hours before measuring electrical properties.  
Resistance to  
Solder Heat  
Q
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
Insulation  
Resistance  
Dielectric  
Meets Initial Values (As Above)  
No visual defects  
Strength  
Appearance  
Capacitance  
Variation  
Step 1: -55ºC ± 2º  
Step 2: Room Temp  
30 ± 3 minutes  
±2.5% or ±.25 pF, whichever is greater  
3 minutes  
Thermal  
Shock  
Q
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
Step 3: +125ºC ± 2º  
Step 4: Room Temp  
30 ± 3 minutes  
Insulation  
Resistance  
Dielectric  
3 minutes  
Repeat for 5 cycles and measure after  
24 hours at room temperature  
Meets Initial Values (As Above)  
No visual defects  
Strength  
Appearance  
Capacitance  
Variation  
±3.0% or ± .3 pF, whichever is greater  
Charge device with twice rated voltage in  
test chamber set at 125ºC ± 2ºC  
for 1000 hours (+48, -0).  
30 pF:  
10 pF, <30 pF:  
<10 pF:  
Q350  
Q275 +5C/2  
Q200 +10C  
Q
Load Life  
(C=Nominal Cap)  
Insulation  
Resistance  
Dielectric  
Remove from test chamber and stabilize at  
room temperature for 24 hours  
before measuring.  
Initial Value x 0.3 (See Above)  
Meets Initial Values (As Above)  
No visual defects  
Strength  
Appearance  
Capacitance  
Variation  
±5.0% or ± .5 pF, whichever is greater  
Store in a test chamber set at 85ºC ± 2ºC/  
85% ± 5% relative humidity for 1000 hours  
(+48, -0) with rated voltage applied.  
30 pF:  
10 pF, <30 pF:  
<10 pF:  
Q350  
Q275 +5C/2  
Q200 +10C  
Load  
Humidity  
Q
Insulation  
Resistance  
Dielectric  
Strength  
Remove from chamber and stabilize at  
room temperature for 24 ± 2 hours  
before measuring.  
Initial Value x 0.3 (See Above)  
Meets Initial Values (As Above)  
5
C0G (NP0) Dielectric  
Capacitance Range  
PREFERRED SIZES ARE SHADED  
SIZE  
0201  
0402  
0603  
0805  
1206  
Soldering  
Packaging  
Reflow Only  
All Paper  
Reflow Only  
All Paper  
Reflow Only  
All Paper  
Reflow/Wave  
Reflow/Wave  
Paper/Embossed  
Paper/Embossed  
MM  
(in.)  
0.60 0.03  
1.00 0.10  
1.60 0.15  
2.01 0.20  
3.20 0.20  
(L) Length  
(0.024 0.001)  
(0.040 0.004)  
(0.063 0.006)  
(0.079 0.008)  
(0.126 0.008)  
MM  
(in.)  
0.30 0.03  
(0.011 0.001)  
0.50 0.10  
(0.020 0.004)  
0.81 0.15  
(0.032 0.006)  
1.25 0.20  
(0.049 0.008)  
1.60 0.20  
(0.063 0.008)  
(W) Width  
MM  
(in.)  
0.15 0.05  
(0.006 0.002)  
0.25 0.15  
(0.010 0.006)  
0.35 0.15  
(0.014 0.006)  
0.50 0.25  
(0.020 0.010)  
0.50 0.25  
(0.020 0.010)  
(t) Terminal  
WVDC  
0.5  
1.0  
1.2  
1.5  
1.8  
2.2  
2.7  
3.3  
3.9  
4.7  
5.6  
6.8  
8.2  
10  
12  
15  
18  
22  
27  
33  
39  
47  
56  
68  
10  
16  
25  
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
16  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
25  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
50  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
6.3  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
25  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
50  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
100  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
16  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
N
N
N
25  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
50  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
100  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
200  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
16  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
25  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
50  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
M
100  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
P
P
P
P
P
200  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
500  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
Cap  
(pF)  
A
A
A
A
82  
A
A
100  
120  
150  
180  
220  
270  
330  
390  
470  
560  
680  
820  
1000  
1200  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
0.010  
0.012  
0.015  
0.018  
0.022  
0.027  
0.033  
0.039  
0.047  
0.068  
0.082  
0.1  
J
M
M
M
M
M
M
P
M
M
M
M
M
M
J
J
J
J
M
Q
Q
Q
W
L
T
Cap  
(µF)  
t
WVDC  
10  
16  
25  
16  
25  
50  
6.3  
25  
50  
100  
16  
25  
50  
100  
200  
16  
25  
50  
100  
200  
500  
SIZE  
0201  
0402  
0603  
0805  
1206  
Letter  
Max.  
Thickness (0.013)  
A
0.33  
C
E
0.71  
(0.028)  
G
0.86  
(0.034)  
J
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
0.56  
(0.022)  
0.94  
(0.037)  
PAPER  
EMBOSSED  
6
C0G (NP0) Dielectric  
Capacitance Range  
PREFERRED SIZES ARE SHADED  
SIZE  
1210  
1812  
1825  
2225  
Soldering  
Reflow Only  
Reflow Only  
Reflow Only  
Reflow Only  
Packaging  
Paper/Embossed  
3.20 ± 0.20  
(0.126 ± 0.008)  
All Embossed  
4.50 ± 0.30  
(0.177 ± 0.012)  
All Embossed  
4.50 ± 0.30  
(0.177 ± 0.012)  
All Embossed  
5.72 ± 0.25  
(0.225 ± 0.010)  
MM  
(in.)  
(L) Length  
MM  
(in.)  
2.50 ± 0.20  
(0.098 ± 0.008)  
3.20 ± 0.20  
(0.126 ± 0.008)  
6.40 ± 0.40  
(0.252 ± 0.016)  
6.35 ± 0.25  
(0.250 ± 0.010)  
(W) Width  
MM  
(in.)  
0.50 ± 0.25  
(0.020 ± 0.010)  
0.61 ± 0.36  
(0.024 ± 0.014)  
0.61 ± 0.36  
(0.024 ± 0.014)  
0.64 ± 0.39  
(0.025 ± 0.015)  
(t) Terminal  
WVDC  
0.5  
1.0  
25  
50  
100  
200  
500  
25  
50  
100  
200  
500  
50  
100  
200  
500  
50  
100  
200  
500  
Cap  
(pF)  
1.2  
1.5  
1.8  
2.2  
2.7  
3.3  
W
L
T
3.9  
4.7  
5.6  
6.8  
8.2  
t
10  
12  
J
J
15  
J
18  
J
22  
J
27  
J
33  
J
39  
J
47  
J
56  
J
68  
J
82  
J
100  
120  
150  
180  
220  
270  
330  
390  
470  
560  
680  
820  
1000  
1200  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
0.010  
0.012  
0.015  
0.018  
0.022  
0.027  
0.033  
0.039  
0.047  
J
J
J
J
J
J
J
M
M
M
M
M
M
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
Q
Q
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
M
M
M
M
M
X
K
K
K
K
K
K
K
K
K
K
K
M
M
M
M
M
M
P
K
K
K
K
K
K
K
K
K
M
M
M
M
K
K
K
K
K
P
P
P
P
P
M
M
M
M
P
Q
Q
Q
Q
X
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
P
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
P
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
Y
P
P
P
P
P
P
P
P
P
P
P
P
P
P
Y
Y
Y
Y
Z
Z
J
M
M
M
X
X
X
P
P
P
Cap  
(µF)  
Q
Q
Q
Q
P
Y
Y
Y
P
P
P
P
P
P
0.068  
0.082  
0.1  
X
X
Y
X
X
Y
P
P
Q
50  
WVDC  
25  
50  
100  
200  
500  
25  
50  
100  
200  
500  
50  
100  
200  
500  
100  
200  
500  
SIZE  
1210  
1812  
1825  
Q
1.78  
(0.070)  
2225  
Letter  
Max.  
Thickness  
A
0.33  
(0.013)  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.86  
(0.034)  
J
K
M
N
1.40  
(0.055)  
P
1.52  
(0.060)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
0.94  
(0.037)  
1.02  
(0.040)  
1.27  
(0.050)  
PAPER  
EMBOSSED  
7
RF/Microwave C0G (NP0) Capacitors  
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors  
GENERAL INFORMATION  
are met on each value producing lot to lot uniformity.  
Sizes available are EIA chip sizes 0603, 0805, and 1210.  
“U” Series capacitors are C0G (NP0) chip capacitors spe-  
cially designed for Ultralow ESR for applications in the  
communications market. Max ESR and effective capacitance  
DIMENSIONS: inches (millimeters)  
0402  
0603  
0805  
1210  
A
A
E
A
A
E
C
B
B
C
B
B
C
C
D
D
D
D
D
D
E
inches (mm)  
Size  
A
B
C
D
E
0402  
0603  
0805  
1210  
0.039±0.004 (1.00±0.1)  
0.020±0.004 (0.50±0.1)  
0.024 (0.6) max  
N/A  
N/A  
0.060±0.010 (1.52±0.25) 0.030±0.010 (0.76±0.25)  
0.036 (0.91) max  
0.010±0.005 (0.25±0.13)  
0.030 (0.76) min  
0.020 (0.51) min  
0.079±0.008 (2.01±0.2)  
0.126±0.008 (3.2±0.2)  
0.049±0.008 (1.25±0.2)  
0.098±0.008 (2.49±0.2)  
0.040±0.005 (1.02±0.127) 0.020±0.010 (0.51±0.255)  
0.050±0.005 (1.27±0.127) 0.025±0.015 (0.635±0.381) 0.040 (1.02) min  
HOW TO ORDER  
0805  
1
U
100  
J
A
T
2
A
Case Size  
0402  
Dielectric =  
Ultra Low  
ESR  
Capacitance  
Tolerance  
Code  
Termination  
T= Plated Ni  
and Solder  
Special  
Code  
A = Standard  
0603  
0805  
1210  
B = ±0.1pF  
C = ±0.25pF  
D = ±0.5pF  
F = ±1%  
G = ±2%  
J = ±5%  
K = ±10%  
M = ±20%  
Voltage  
Code  
3 = 25V  
5 = 50V  
1 = 100V  
2 = 200V  
Failure Rate  
Code  
Packaging  
Code  
2 = 7" Reel  
4 = 13" Reel  
9 = Bulk  
A = Not  
Capacitance  
Applicable  
EIA Capacitance Code in pF.  
First two digits = significant figures  
or R” for decimal place.  
Third digit = number of zeros or after  
“R” significant figures.  
ELECTRICAL CHARACTERISTICS  
Dielectric Working Voltage (DWV):  
Capacitance Values and Tolerances:  
Size 0402 - 0.2 pF to 22 pF @ 1 MHz  
Size 0603 - 1.0 pF to 100 pF @ 1 MHz  
Size 0805 - 1.6 pF to 160 pF @ 1 MHz  
Size 1210 - 2.4 pF to 1000 pF @ 1 MHz  
250% of rated WVDC  
Equivalent Series Resistance Typical (ESR):  
0402  
0603  
0805  
1210  
-
-
-
-
See Performance Curve, page 9  
See Performance Curve, page 9  
See Performance Curve, page 9  
See Performance Curve, page 9  
Temperature Coefficient of Capacitance (TC):  
0±30 ppm/°C (-55° to +125°C)  
Marking: Laser marking EIA J marking standard  
(except 0603) (capacitance code and  
tolerance upon request).  
Insulation Resistance (IR):  
1012 min. @ 25°C and rated WVDC  
1011 min. @ 125°C and rated WVDC  
Working Voltage (WVDC):  
MILITARY SPECIFICATIONS  
Size  
Working Voltage  
50, 25 WVDC  
Meets or exceeds the requirements of MIL-C-55681  
0402  
0603  
0805  
1210  
-
-
-
-
200, 100, 50 WVDC  
200, 100 WVDC  
200, 100 WVDC  
8
RF/Microwave C0G (NP0) Capacitors  
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors  
CAPACITANCE RANGE  
Size  
Cap (pF) Tolerance 0402 0603 0805 1210  
Size  
Cap (pF) Tolerance 0402 0603 0805 1210  
F,G,J,K,M N/A 100V 200V 200V  
Size  
Size  
Available  
Available  
Available  
Available  
Cap (pF) Tolerance 0402 0603 0805 1210  
Cap (pF) Tolerance 0402 0603 0805 1210  
7.5  
8.2  
9.1  
10  
11  
12  
13  
15  
18  
20  
22  
24  
27  
30  
33  
36  
39  
43  
47  
51  
56  
68  
75  
82  
91  
B,C,J,K,M 50V 200V 200V 200V  
100  
110  
120  
130  
140  
150  
160  
180  
200  
220  
270  
300  
330  
360  
390  
430  
470  
510  
560  
620  
680  
750  
820  
910  
0.2  
0.3  
0.4  
0.5  
0.6  
0.7  
0.8  
0.9  
B,C  
50V N/A N/A N/A  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
1.9  
2.0  
2.1  
2.2  
2.4  
2.7  
3.0  
3.3  
3.6  
3.9  
4.3  
4.7  
5.1  
5.6  
6.2  
6.8  
B,C,D  
50V 200V 200V N/A  
50V  
B,C,J,K,M  
F,G,J,K,M  
B,C  
B,C,D  
50V  
N/A 200V  
N/A  
B,C,D  
50V  
N/A  
200V  
100V  
100V  
B,C,D  
B,C,J,K,M  
F,G,J,K,M  
1000 F,G,J,K,M  
ULTRA LOW ESR, “U” SERIES  
TYPICAL ESR vs. FREQUENCY  
0402 “U” SERIES  
TYPICAL ESR vs. FREQUENCY  
0603 “U” SERIES  
1
1
10 pF  
15 pF  
3.3 pF  
3.9 pF  
4.7 pF  
5.1 pF  
6.8 pF  
10.0 pF  
15.0 pF  
0.1  
0.1  
0.01  
0.01  
2500  
2500  
0
0
500  
1000  
Frequency (MHz)  
2000  
500  
1000  
Frequency (MHz)  
2000  
1500  
1500  
TYPICAL ESR vs. FREQUENCY  
1210 “U” SERIES  
TYPICAL ESR vs. FREQUENCY  
0805 “U” SERIES  
1
1
100 pF  
10.0 pF  
10 pF  
100 pF  
0.1  
0.1  
300 pF  
0.01  
0.01  
2500  
0
0
500  
1000  
2000  
500  
1000  
Frequency (MHz)  
2000  
1500  
1500  
Frequency (MHz)  
ESR Measured on the Boonton 34A  
9
RF/Microwave C0G (NP0) Capacitors  
Ultra Low ESR, “U” Series, C0G (NP0) Chip Capacitors  
F r e q u e n c y ( G H z )  
10  
Designer Kits  
Communication Kits “U” Series  
“U” SERIES KITS  
Solder Plated, Nickel Barrier  
0402  
0603  
Kit 5000 UZ*  
Kit 4000 UZ**  
Cap.  
Value  
pF  
Cap.  
Tol.† Value  
pF  
Cap.  
Value  
pF  
Cap.  
Tol.† Value  
pF  
Tol.†  
Tol.†  
0.5  
1.0  
1.5  
1.8  
2.2  
2.4  
3.0  
3.6  
B
B
B
B
B
B
B
B
4.7  
5.6  
6.8  
B
B
B
B
J
1.0  
1.2  
1.5  
1.8  
2.0  
2.4  
2.7  
3.0  
3.3  
3.9  
4.7  
5.6  
±.25pF  
±.25pF  
±.25pF  
±.25pF  
±.25pF  
±.25pF  
±.25pF  
±.25pF  
±.25pF  
±.25pF  
±.25pF  
±.25pF  
6.8  
7.5  
8.2  
±.25pF  
±.25pF  
±.25pF  
±5%  
±5%  
±5%  
±5%  
±5%  
±5%  
±5%  
8.2  
10.0  
12.0  
15.0  
18.0  
22.0  
27.0  
33.0  
39.0  
47.0  
10.0  
12.0  
15.0  
J
J
* 150 Capacitors 10 each of 15 values.  
±5%  
±5%  
** 240 Capacitors 10 each of 24 values.  
0805  
1210  
Kit 3000 UZ***  
Kit 3500 UZ***  
Cap.  
Value  
pF  
Cap.  
Tol.† Value  
pF  
Cap.  
Value  
pF  
Cap.  
Value  
pF  
Cap.  
Tol.† Value  
pF  
Cap.  
Value  
pF  
Tol.†  
Tol.†  
Tol.†  
Tol.†  
1.0  
1.5  
2.2  
2.4  
2.7  
3.0  
3.3  
3.9  
4.7  
5.6  
C
C
C
C
C
C
C
C
C
C
7.5  
8.2  
9.1  
10.0  
12.0  
15.0  
18.0  
22.0  
24.0  
27.0  
C
C
C
J
J
J
J
J
J
J
33  
36  
39  
47  
56  
68  
82  
100  
130  
160  
J
J
J
J
J
J
J
J
J
J
2.2  
2.7  
4.7  
5.1  
6.8  
8.2  
9.1  
10  
C
C
C
C
C
C
C
J
18  
20  
24  
27  
30  
36  
39  
47  
51  
56  
J
J
J
J
J
J
J
J
J
J
68  
82  
J
J
J
J
J
J
J
J
J
J
100  
120  
130  
240  
300  
390  
470  
680  
13  
15  
J
J
*** 300 Capacitors 10 each of 30 values.  
†Tolerance – B = ±0.1pF  
C = ±0.25pF  
J = ±5%  
11  
X7R Dielectric  
General Specifications  
X7R formulations are called temperature stable” ceramics  
and fall into EIA Class II materials. X7R is the most popular  
of these intermediate dielectric constant materials. Its tem-  
perature variation of capacitance is within ±15% from  
-55°C to +125°C. This capacitance change is non-linear.  
Capacitance for X7R varies under the influence of electrical  
operating conditions such as voltage and frequency.  
X7R dielectric chip usage covers the broad spectrum of  
industrial applications where known changes in capaci-  
tance due to applied voltages are acceptable.  
PART NUMBER (see page 2 for complete part number explanation)  
0805  
5
C
103  
M
A
T
2
A
Size  
(L" x W")  
Voltage  
4V = 4  
Dielectric  
X7R = C  
Capacitance Capacitance  
Failure  
Rate  
A = Not  
Applicable  
Terminations  
T = Plated Ni  
and Sn  
Packaging  
2 = 7" Reel  
4 = 13" Reel  
7 = Bulk Cass.  
9 = Bulk  
Special  
Code  
A = Std.  
Product  
Code (In pF)  
2 Sig. Digits +  
Number of  
Zeros  
Tolerance  
J = ± 5%  
6.3V = 6  
10V = Z  
16V = Y  
25V = 3  
50V = 5  
100V = 1  
200V = 2  
500V = 7  
K = ±10%  
M = ± 20%  
7 = Gold  
Plated  
Contact  
Factory For  
Multiples  
X7R Dielectric  
Insulation Resistance vs Temperature  
Capacitance vs. Frequency  
Typical Temperature Coefficient  
10,000  
1,000  
100  
+30  
+20  
+10  
10  
5
0
-5  
0
-10  
-20  
-30  
-10  
-15  
-20  
-25  
0
0
20  
40  
60  
80  
100  
120  
-60 -40  
100 140  
120  
1KHz  
10 KHz  
100 KHz  
1 MHz  
10 MHz  
-20  
0
20 40 60 80  
Frequency  
Temperature °C  
Temperature °C  
Variation of Impedance with Cap Value  
Impedance vs. Frequency  
1,000 pF vs. 10,000 pF - X7R  
0805  
Variation of Impedance with Chip Size  
Impedance vs. Frequency  
100,000 pF - X7R  
Variation of Impedance with Chip Size  
Impedance vs. Frequency  
10,000 pF - X7R  
10  
10.00  
10  
1206  
0805  
1210  
1206  
0805  
1210  
1,000 pF  
10,000 pF  
1.0  
0.1  
.01  
1.00  
1.0  
0.10  
0.01  
0.1  
.01  
100  
1,000  
1
10  
100  
1000  
10  
100  
1,000  
1
10  
Frequency, MHz  
Frequency, MHz  
Frequency, MHz  
12  
X7R Dielectric  
Specifications and Test Methods  
Parameter/Test  
Operating Temperature Range  
Capacitance  
X7R Specification Limits  
Measuring Conditions  
Temperature Cycle Chamber  
-55ºC to +125ºC  
Within specified tolerance  
2.5% for 50V DC rating  
3.0% for 25V DC rating  
3.5% for 16V DC rating  
5.0% for 10V DC rating  
100,000Mor 1000M- µF,  
whichever is less  
Freq.: 1.0 kHz ± 10%  
Voltage: 1.0Vrms ± .2V  
For Cap > 10 µF, 0.5Vrms @ 120Hz  
Dissipation Factor  
Charge device with rated voltage for  
120 ± 5 secs @ room temp/humidity  
Charge device with 300% of rated voltage for  
1-5 seconds, w/charge and discharge current  
limited to 50 mA (max)  
Insulation Resistance  
Dielectric Strength  
No breakdown or visual defects  
Note: Charge device with 150% of rated  
voltage for 500V devices.  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
No defects  
Deflection: 2mm  
Test Time: 30 seconds  
±12%  
Resistance to  
Flexure  
1mm/sec  
Meets Initial Values (As Above)  
Stresses  
Insulation  
Resistance  
Initial Value x 0.3  
90 mm  
95% of each terminal should be covered  
with fresh solder  
Dip device in eutectic solder at 230 ± 5ºC  
for 5.0 ± 0.5 seconds  
Solderability  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
No defects, <25% leaching of either end terminal  
±7.5%  
Dip device in eutectic solder at 260ºC for 60  
seconds. Store at room temperature for 24 ± 2  
hours before measuring electrical properties.  
Resistance to  
Solder Heat  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
No visual defects  
Step 1: -55ºC ± 2º  
Step 2: Room Temp  
30 ± 3 minutes  
±7.5%  
3 minutes  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Thermal  
Shock  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
Step 3: +125ºC ± 2º  
Step 4: Room Temp  
30 ± 3 minutes  
3 minutes  
Repeat for 5 cycles and measure after  
24 ± 2 hours at room temperature  
Meets Initial Values (As Above)  
No visual defects  
Charge device with twice rated voltage in  
test chamber set at 125ºC ± 2ºC  
for 1000 hours (+48, -0)  
±12.5%  
Initial Value x 2.0 (See Above)  
Initial Value x 0.3 (See Above)  
Load Life  
Remove from test chamber and stabilize  
at room temperature for 24 ± 2 hours  
before measuring.  
Meets Initial Values (As Above)  
No visual defects  
Store in a test chamber set at 85ºC ± 2ºC/  
85% ± 5% relative humidity for 1000 hours  
(+48, -0) with rated voltage applied.  
±12.5%  
Load  
Humidity  
Initial Value x 2.0 (See Above)  
Initial Value x 0.3 (See Above)  
Meets Initial Values (As Above)  
Remove from chamber and stabilize at  
room temperature and humidity for  
24 ± 2 hours before measuring.  
13  
X7R Dielectric  
Capacitance Range  
PREFERRED SIZES ARE SHADED  
SIZE  
0201  
0402  
0603  
0805  
1206  
Soldering  
Packaging  
Reflow Only  
All Paper  
Reflow Only  
All Paper  
Reflow Only  
All Paper  
Reflow/Wave  
Paper/Embossed  
Reflow/Wave  
Paper/Embossed  
MM  
(in.)  
0.60 ± 0.03  
(0.024 ± 0.001)  
1.00 ± 0.10  
(0.040 ± 0.004)  
1.60 ± 0.15  
(0.063 ± 0.006)  
2.01 ± 0.20  
(0.079 ± 0.008)  
3.20 ± 0.20  
(0.126 ± 0.008)  
(L) Length  
MM  
(in.)  
0.30 ± 0.03  
(0.011 ± 0.001)  
0.50 ± 0.10  
(0.020 ± 0.004)  
0.81 ± 0.15  
(0.032 ± 0.006)  
1.25 ± 0.20  
(0.049 ± 0.008)  
1.60 ± 0.20  
(0.063 ± 0.008)  
(W) Width  
MM  
(in.)  
0.15 ± 0.05  
(0.006 ± 0.002)  
0.25 ± 0.15  
(0.010 ± 0.006)  
0.35 ± 0.15  
(0.014 ± 0.006)  
0.50 ± 0.25  
(0.020 ± 0.010)  
0.50 ± 0.25  
(0.020 ± 0.010)  
(t) Terminal  
WVDC  
100  
150  
220  
330  
16  
A
A
A
A
A
A
A
16  
25  
50  
10  
16  
25  
50  
100  
10  
16  
25  
50  
100  
200  
10  
16  
25  
50  
100  
200  
500  
Cap  
(pF)  
C
C
C
C
C
C
C
C
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
J
J
J
J
J
J
J
J
J
K
K
K
K
M
M
M
M
P
470  
680  
1000  
1500  
2200  
3300  
4700  
6800  
0.010  
0.015  
0.022  
0.033  
0.047  
0.068  
0.10  
0.15  
0.22  
0.33  
0.47  
0.68  
1.0  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
J
J
J
J
J
J
J
J
J
J
J
J
J
J
C
C
C
C
C
C
C
Cap  
(µF  
J
J
M
J
P
G
G
G
G
M
M
M
M
P
G
G
G
J
J
M
G
G
G
G
J
J
M
M
M
N
N
N
M
M
M
P
Q
Q
W
L
1.5  
2.2  
3.3  
T
4.7  
10  
t
22  
47  
100  
WVDC  
16  
16  
25  
50  
10  
16  
25  
50  
100  
10  
16  
25  
50  
100  
200  
10  
16  
25  
50  
100  
200  
500  
SIZE  
0201  
0402  
0603  
0805  
1206  
Letter  
Max.  
Thickness  
A
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.86  
(0.034)  
J
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
Z
2.79  
(0.110)  
0.33  
(0.013)  
0.94  
(0.037)  
2.54  
(0.100)  
PAPER  
EMBOSSED  
14  
X7R Dielectric  
Capacitance Range  
PREFERRED SIZES ARE SHADED  
SIZE  
1210  
1812  
1825  
2220  
2225  
Soldering  
Reflow Only  
Reflow Only  
Reflow Only  
Reflow Only  
Reflow Only  
Packaging  
Paper/Embossed  
3.20 ± 0.20  
(0.126 ± 0.008)  
All Embossed  
4.50 ± 0.30  
(0.177 ± 0.012)  
All Embossed  
4.50 ± 0.30  
(0.177 ± 0.012)  
All Embossed  
5.70 ± 0.40  
(0.225 ± 0.016)  
All Embossed  
5.72 ± 0.25  
(0.225 ± 0.010)  
MM  
(in.)  
(L) Length  
MM  
(in.)  
2.50 ± 0.20  
(0.098 ± 0.008)  
3.20 ± 0.20  
(0.126 ± 0.008)  
6.40 ± 0.40  
(0.252 ± 0.016)  
5.00 ± 0.40  
(0.197 ± 0.016)  
6.35 ± 0.25  
(0.250 ± 0.010)  
(W) Width  
MM  
(in.)  
0.50 ± 0.25  
(0.020 ± 0.010)  
0.61 ± 0.36  
(0.024 ± 0.014)  
0.61 ± 0.36  
(0.024 ± 0.014)  
0.64 ± 0.39  
(0.025 ± 0.015)  
0.64 ± 0.39  
(0.025 ± 0.015)  
(t) Terminal  
WVDC  
10  
16  
25  
50  
100  
200  
500  
50  
100  
200  
500  
50  
100  
6.3  
50  
100  
200  
50  
100  
Cap  
(pF)  
100  
150  
220  
W
L
330  
T
470  
680  
1000  
1500  
2200  
3300  
4700  
6800  
0.010  
0.015  
0.022  
0.033  
0.047  
0.068  
0.10  
0.15  
0.22  
0.33  
0.47  
0.68  
1.0  
t
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
P
P
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
X
X
J
J
J
J
J
J
J
J
J
J
J
J
M
P
Z
Z
Z
Z
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
P
Cap  
(µF  
K
K
K
K
K
K
K
K
K
K
K
M
M
K
K
K
K
K
K
K
K
K
M
P
K
K
K
K
K
K
K
P
K
P
P
X
Z
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Z
X
X
X
X
X
X
X
X
M
P
P
P
P
P
P
P
P
P
P
P
P
P
M
M
M
M
M
M
M
M
M
M
M
M
M
M
Q
J
M
M
P
Q
X
1.5  
2.2  
X
X
Z
3.3  
4.7  
10  
Q
Z
Z
22  
47  
100  
WVDC  
10  
16  
25  
50  
100  
200  
500  
50  
100  
200  
500  
50  
100  
6.3  
50  
100  
200  
50  
100  
SIZE  
1210  
1812  
1825  
P
1.52  
(0.060)  
2220  
2225  
Letter  
Max.  
Thickness  
A
C
0.56  
(0.022)  
E
G
0.86  
(0.034)  
J
K
M
1.27  
(0.050)  
N
1.40  
(0.055)  
Q
1.78  
(0.070)  
X
Y
2.54  
(0.100)  
Z
0.33  
(0.013)  
0.71  
(0.028)  
0.94  
(0.037)  
1.02  
(0.040)  
2.29  
(0.090)  
2.79  
(0.110)  
PAPER  
EMBOSSED  
15  
X7S Dielectric  
General Specifications  
GENERAL DESCRIPTION  
X7S formulations are called temperature stable ceramics and fall  
into EIA Class II materials. X7S is the most popular of these intermedi-  
ate dielectric constant materials. Its temperature variation of capaci-  
tance is within ±22% from –55°C to +125°C. This capacitance  
change is non-linear.  
Capacitance for X7S varies under the influence of electrical operating  
conditions such as voltage and frequency.  
X7S dielectric chip usage covers the broad spectrum of industrial  
applications where known changes in capacitance due to applied  
voltages are acceptable.  
PART NUMBER (see page 2 for complete part number explanation)  
1206  
Z
Z
105  
M
A
T
2
A
Size  
(L" x W")  
Voltage  
4 = 4V  
Dielectric  
Z = X7S  
Capacitance Capacitance  
Failure  
Rate  
A = N/A  
Special  
Code  
A = Std.  
Product  
Terminations  
T = Plated Ni  
and Sn  
Packaging  
2 = 7" Reel  
4 = 13" Reel  
7 = Bulk Cass.  
Code (In pF)  
2 Sig. Digits +  
Number of  
Zeros  
Tolerance  
K = ±10%  
M = ±20%  
6 = 6.3V  
Z = 10V  
Y = 16V  
3 = 25V  
5 = 50V  
1 = 100V  
2 = 200V  
TYPICAL ELECTRICAL CHARACTERISTICS  
X7S Dielectric  
Typical Temperature Coefficient  
Insulation Resistance vs Temperature  
Capacitance vs. Frequency  
10,000  
1,000  
100  
+30  
+20  
+10  
10  
5
0
-5  
0
-10  
-20  
-30  
-10  
-15  
-20  
-25  
0
-60 -40 -20  
0
20 40 60 80 100 120 140  
0
20  
40  
60  
80  
100  
120  
1KHz  
10 KHz  
100 KHz  
1 MHz  
10 MHz  
Temperature (°C)  
Frequency  
Temperature °C  
Variation of Impedance with Cap Value  
Impedance vs. Frequency  
1,000 pF vs. 10,000 pF - X7S  
0805  
Variation of Impedance with Chip Size  
Impedance vs. Frequency  
100,000 pF - X7S  
Variation of Impedance with Chip Size  
Impedance vs. Frequency  
10,000 pF - X7S  
10  
10.00  
10  
1206  
0805  
1210  
1206  
0805  
1210  
1,000 pF  
10,000 pF  
1.0  
0.1  
.01  
1.00  
1.0  
0.10  
0.01  
0.1  
.01  
100  
1,000  
1
10  
100  
1000  
10  
100  
1,000  
1
10  
Frequency, MHz  
Frequency, MHz  
Frequency, MHz  
16  
X7S Dielectric  
Specifications and Test Methods  
Parameter/Test  
Operating Temperature Range  
Capacitance  
X7S Specification Limits  
Measuring Conditions  
Temperature Cycle Chamber  
-55ºC to +125ºC  
Within specified tolerance  
2.5% for 50V DC rating  
3.0% for 25V DC rating  
3.5% for 16V DC rating  
5.0% for 10V DC rating  
100,000Mor 1000M- µF,  
whichever is less  
Freq.: 1.0 kHz ± 10%  
Voltage: 1.0Vrms ± .2V  
For Cap > 10 µF, 0.5Vrms @ 120Hz  
Dissipation Factor  
Charge device with rated voltage for  
120 ± 5 secs @ room temp/humidity  
Charge device with 300% of rated voltage for  
1-5 seconds, w/charge and discharge current  
limited to 50 mA (max)  
Insulation Resistance  
Dielectric Strength  
No breakdown or visual defects  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
No defects  
Deflection: 2mm  
Test Time: 30 seconds  
±12%  
Resistance to  
Flexure  
1mm/sec  
Meets Initial Values (As Above)  
Stresses  
Insulation  
Resistance  
Initial Value x 0.3  
90 mm  
95% of each terminal should be covered  
with fresh solder  
Dip device in eutectic solder at 230 ± 5ºC  
for 5.0 ± 0.5 seconds  
Solderability  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
No defects, <25% leaching of either end terminal  
±7.5%  
Dip device in eutectic solder at 260ºC for 60  
seconds. Store at room temperature for 24 ± 2  
hours before measuring electrical properties.  
Resistance to  
Solder Heat  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
No visual defects  
Step 1: -55ºC ± 2º  
Step 2: Room Temp  
30 ± 3 minutes  
±7.5%  
3 minutes  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Thermal  
Shock  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
Step 3: +125ºC ± 2º  
Step 4: Room Temp  
30 ± 3 minutes  
3 minutes  
Repeat for 5 cycles and measure after  
24 ± 2 hours at room temperature  
Meets Initial Values (As Above)  
No visual defects  
Charge device with twice rated voltage in  
test chamber set at 125ºC ± 2ºC  
for 1000 hours (+48, -0)  
±12.5%  
Initial Value x 2.0 (See Above)  
Initial Value x 0.3 (See Above)  
Load Life  
Remove from test chamber and stabilize  
at room temperature for 24 ± 2 hours  
before measuring.  
Meets Initial Values (As Above)  
No visual defects  
Store in a test chamber set at 85ºC ± 2ºC/  
85% ± 5% relative humidity for 1000 hours  
(+48, -0) with rated voltage applied.  
±12.5%  
Load  
Humidity  
Initial Value x 2.0 (See Above)  
Initial Value x 0.3 (See Above)  
Meets Initial Values (As Above)  
Remove from chamber and stabilize at  
room temperature and humidity for  
24 ± 2 hours before measuring.  
17  
X7S Dielectric  
Capacitance Range  
PREFERRED SIZES ARE SHADED  
SIZE  
0402  
0603  
0805  
1206  
1210  
Soldering  
Packaging  
Reflow Only  
All Paper  
Reflow Only  
All Paper  
Reflow/Wave  
Paper/Embossed  
Reflow/Wave  
Paper/Embossed  
Reflow Only  
Paper/Embossed  
MM  
(in.)  
1.00 ± 0.10  
(0.040 ± 0.004)  
1.60 ± 0.15  
(0.063 ± 0.006)  
2.01 ± 0.20  
(0.079 ± 0.008)  
3.20 ± 0.20  
(0.126 ± 0.008)  
3.20 ± 0.20  
(0.126 ± 0.008)  
(L) Length  
MM  
(in.)  
0.50 ± 0.10  
(0.020 ± 0.004)  
0.81 ± 0.15  
(0.032 ± 0.006)  
1.25 ± 0.20  
(0.049 ± 0.008)  
1.60 ± 0.20  
(0.063 ± 0.008)  
2.50 ± 0.20  
(0.098 ± 0.008)  
(W) Width  
MM  
(in.)  
0.25 ± 0.15  
(0.010 ± 0.006)  
0.35 ± 0.15  
(0.014 ± 0.006)  
0.50 ± 0.25  
(0.020 ± 0.010)  
0.50 ± 0.25  
(0.020 ± 0.010)  
0.50 ± 0.25  
(0.020 ± 0.010)  
(t) Terminal  
WVDC  
6.3  
6.3  
4
6.3  
10  
6.3  
Cap  
(pF)  
100  
150  
220  
330  
W
L
470  
680  
T
1000  
1500  
2200  
3300  
4700  
6800  
0.010  
0.015  
0.022  
0.033  
0.047  
0.068  
0.10  
0.15  
0.22  
0.33  
0.47  
0.68  
1.0  
t
Cap  
(µF  
C
C
C
C
G
G
G
G
1.5  
2.2  
3.3  
4.7  
N
N
N
N
Q
Q
Q
Q
Q
10  
22  
Z
47  
100  
WVDC  
6.3  
6.3  
4
6.3  
10  
6.3  
SIZE  
0402  
0603  
0805  
1206  
1210  
Letter  
Max.  
Thickness  
A
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.86  
(0.034)  
J
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
0.33  
(0.013)  
0.94  
(0.037)  
PAPER  
EMBOSSED  
18  
X5R Dielectric  
General Specifications  
GENERAL DESCRIPTION  
• General Purpose Dielectric for Ceramic Capacitors  
• EIA Class II Dielectric  
• Temperature variation of capacitance is within ±15%  
from -55°C to +85°C  
• Well suited for decoupling and filtering applications  
Available in High Capacitance values (up to 100µF)  
PART NUMBER (see page 2 for complete part number explanation)  
2220  
6
D
107  
M
A
T
2
A
Size  
(L" x W")  
Voltage  
4 = 4V  
Dielectric  
D = X5R  
Capacitance Capacitance  
Failure  
Rate  
A = N/A  
Special  
Code  
A = Std.  
Terminations  
T = Plated Ni  
and Sn  
Packaging  
2 = 7" Reel  
4 = 13" Reel  
7 = Bulk Cass.  
9 = Bulk  
Code (In pF)  
2 Sig. Digits +  
Number of  
Zeros  
Tolerance  
K = ±10%  
M = ±20%  
6 = 6.3V  
Z = 10V  
Y = 16V  
3 = 25V  
D = 35V  
5 = 50V  
TYPICAL ELECTRICAL CHARACTERISTICS  
Temperature Coefficient  
Insulation Resistance vs Temperature  
10,000  
1,000  
100  
20  
15  
10  
5
0
-5  
-10  
-15  
-20  
0
0
-60 -40  
-20  
0
+20 +40 +60 +80  
20  
40  
60  
80  
100  
120  
Temperature °C  
Temperature °C  
19  
X5R Dielectric  
Specifications and Test Methods  
Parameter/Test  
Operating Temperature Range  
Capacitance  
X5R Specification Limits  
Measuring Conditions  
Temperature Cycle Chamber  
-55ºC to +85ºC  
Within specified tolerance  
2.5% for 50V DC rating  
3.0% for 25V DC rating  
3.5% for 16V DC rating  
5.0% for 10V DC rating  
100,000Mor 500M- µF,  
whichever is less  
Freq.: 1.0 kHz ± 10%  
Voltage: 1.0Vrms ± .2V  
For Cap > 10 µF, 0.5Vrms @ 120Hz  
Dissipation Factor  
Charge device with rated voltage for  
120 ± 5 secs @ room temp/humidity  
Charge device with 300% of rated voltage for  
1-5 seconds, w/charge and discharge current  
limited to 50 mA (max)  
Insulation Resistance  
Dielectric Strength  
No breakdown or visual defects  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
No defects  
Deflection: 2mm  
Test Time: 30 seconds  
±12%  
Resistance to  
Flexure  
1mm/sec  
Meets Initial Values (As Above)  
Stresses  
Insulation  
Resistance  
Initial Value x 0.3  
90 mm  
95% of each terminal should be covered  
with fresh solder  
Dip device in eutectic solder at 230 ± 5ºC  
for 5.0 ± 0.5 seconds  
Solderability  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
No defects, <25% leaching of either end terminal  
±7.5%  
Dip device in eutectic solder at 260ºC for 60  
seconds. Store at room temperature for 24 ± 2  
hours before measuring electrical properties.  
Resistance to  
Solder Heat  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
No visual defects  
Step 1: -55ºC ± 2º  
Step 2: Room Temp  
30 ± 3 minutes  
±7.5%  
3 minutes  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Thermal  
Shock  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
Step 3: +85ºC ± 2º  
Step 4: Room Temp  
30 ± 3 minutes  
3 minutes  
Repeat for 5 cycles and measure after  
24 ± 2 hours at room temperature  
Meets Initial Values (As Above)  
No visual defects  
Charge device with 1.5X rated voltage in  
test chamber set at 85ºC ± 2ºC for 1000 hours  
(+48, -0). Note: Contact factory for specific high  
CV devices that are tested at 1.5X rated voltage.  
±12.5%  
Initial Value x 2.0 (See Above)  
Initial Value x 0.3 (See Above)  
Load Life  
Remove from test chamber and stabilize  
at room temperature for 24 ± 2 hours  
before measuring.  
Meets Initial Values (As Above)  
No visual defects  
Store in a test chamber set at 85ºC ± 2ºC/  
85% ± 5% relative humidity for 1000 hours  
(+48, -0) with rated voltage applied.  
±12.5%  
Load  
Humidity  
Initial Value x 2.0 (See Above)  
Initial Value x 0.3 (See Above)  
Meets Initial Values (As Above)  
Remove from chamber and stabilize at  
room temperature and humidity for  
24 ± 2 hours before measuring.  
20  
X5R Dielectric  
Capacitance Range  
PREFERRED SIZES ARE SHADED  
SIZE  
0201  
0402  
0603  
0805  
Soldering  
Packaging  
Reflow Only  
All Paper  
Reflow Only  
All Paper  
Reflow Only  
All Paper  
Reflow/Wave  
Paper/Embossed  
MM  
(in.)  
0.60 ± 0.03  
(0.024 ± 0.001)  
1.00 ± 0.10  
(0.040 ± 0.004)  
1.60 ± 0.15  
(0.063 ± 0.006)  
2.01 ± 0.20  
(0.079 ± 0.008)  
(L) Length  
MM  
(in.)  
0.30 ± 0.03  
(0.011 ± 0.001)  
0.50 ± 0.10  
(0.020 ± 0.004)  
0.81 ± 0.15  
(0.032 ± 0.006)  
1.25 ± 0.20  
(0.049 ± 0.008)  
(W) Width  
MM  
(in.)  
0.15 ± 0.05  
(0.006 ± 0.002)  
0.25 ± 0.15  
(0.010 ± 0.006)  
0.35 ± 0.15  
(0.014 ± 0.006)  
0.50 ± 0.25  
(0.020 ± 0.010)  
(t) Terminal  
WVDC  
100  
150  
220  
330  
10  
16  
25  
A
A
A
A
A
A
A
4
6.3  
10  
16  
25  
4
6.3  
10  
16  
25  
35  
6.3  
10  
16  
25  
35  
50  
Cap  
(pF)  
W
L
T
470  
680  
1000  
1500  
2200  
3300  
4700  
6800  
0.010  
0.015  
0.022  
0.033  
0.047  
0.068  
0.10  
0.15  
0.22  
0.33  
0.47  
0.68  
1.0  
A
A
t
A
A
A
A
A
Cap  
(µF  
C
C
C
G
G
G
G
C
C
C
C
G
G
G
G
G
G
N
N
C
C
C
N
N
G
G
G
G
G
C
C
C
C
C
C
N
N
N
N
N
N
N
N
G
G
G
G
1.5  
2.2  
3.3  
4.7  
6.8  
10  
N
N
N
N
G
G
N
N
22  
47  
100  
WVDC  
10  
16  
25  
4
6.3  
10  
16  
25  
4
6.3  
10  
16  
25  
35  
6.3  
10  
16  
25  
35  
50  
SIZE  
0201  
0402  
0603  
0805  
Letter  
Max.  
Thickness  
A
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.86  
(0.034)  
J
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
0.33  
(0.013)  
0.94  
(0.037)  
PAPER  
EMBOSSED  
21  
X5R Dielectric  
Capacitance Range  
PREFERRED SIZES ARE SHADED  
SIZE  
1206  
1210  
1812  
Soldering  
Reflow/Wave  
Reflow Only  
Reflow Only  
Packaging  
Paper/Embossed  
3.20 ± 0.20  
(0.126 ± 0.008)  
Paper/Embossed  
3.20 ± 0.20  
(0.126 ± 0.008)  
All Embossed  
4.50 ± 0.30  
(0.177 ± 0.012)  
MM  
(in.)  
(L) Length  
MM  
(in.)  
1.60 ± 0.20  
(0.063 ± 0.008)  
2.50 ± 0.20  
(0.098 ± 0.008)  
3.20 ± 0.20  
(0.126 ± 0.008)  
(W) Width  
MM  
(in.)  
0.50 ± 0.25  
(0.020 ± 0.010)  
0.50 ± 0.25  
(0.020 ± 0.010)  
0.61 ± 0.36  
(0.024 ± 0.014)  
(t) Terminal  
WVDC  
6.3  
10  
16  
25  
35  
6.3  
10  
16  
25  
35  
6.3  
10  
25  
Cap  
(pF)  
100  
150  
220  
W
L
330  
T
470  
680  
1000  
1500  
2200  
3300  
4700  
6800  
0.010  
0.015  
0.022  
0.033  
0.047  
0.068  
0.10  
0.15  
0.22  
0.33  
0.47  
0.68  
1.0  
1.5  
2.2  
3.3  
4.7  
6.8  
10  
22  
47  
t
Cap  
(µF  
M
Q
N
X
Q
Q
Q
Q
Q
Q
Q
Z
Q
Q
Z
Z
Z
Z
Z
Z
Z
Z
Z
100  
WVDC  
6.3  
10  
16  
25  
35  
6.3  
10  
16  
25  
35  
6.3  
10  
25  
SIZE  
1206  
1210  
1812  
Letter  
Max.  
Thickness  
A
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.86  
(0.034)  
J
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
0.33  
(0.013)  
0.94  
(0.037)  
PAPER  
EMBOSSED  
22  
Y5V Dielectric  
General Specifications  
Y5V formulations are for general-purpose use in a limited  
temperature range. They have a wide temperature character-  
istic of +22% –82% capacitance change over the operating  
temperature range of –30°C to +85°C.  
These characteristics make Y5V ideal for decoupling applica-  
tions within limited temperature range.  
PART NUMBER (see page 2 for complete part number explanation)  
0805  
3
G
104  
Z
A
T
2
A
Size  
(L" x W")  
Voltage  
6.3V = 6  
10V = Z  
16V = Y  
25V = 3  
50V = 5  
Dielectric  
Y5V = G  
Capacitance Capacitance  
Failure  
Rate  
A = Not  
Applicable  
Terminations  
T = Plated Ni  
and Sn  
Packaging  
2 = 7" Reel  
4 = 13" Reel  
Special  
Code  
A = Std.  
Product  
Code (In pF)  
2 Sig. Digits +  
Number of  
Zeros  
Tolerance  
Z = +80 –20%  
Capacitance Change  
vs. DC Bias Voltage  
Temperature Coefficient  
Insulation Resistance vs. Temperature  
10,000  
1,000  
100  
+20  
+10  
0
+40  
+20  
0
-10  
-20  
-30  
-40  
-50  
-60  
-70  
-80  
-20  
-40  
-60  
-80  
0
-100  
0
-55 -35  
+125  
+20  
+30  
+40 +50 +60  
+70 +80 +90  
-15 +5 +25 +45 +65 +85 +105  
40  
100  
20  
60  
80  
Temperature °C  
Temperature °C  
% DC Bias Voltage  
0.22 F - 0805  
Impedance vs. Frequency  
1 F - 1206  
Impedance vs. Frequency  
0.1 F - 0603  
Impedance vs. Frequency  
1,000  
100  
10  
1,000  
10,000  
1,000  
100  
10  
1
100  
10  
1
1
0.1  
0.1  
0.1  
0.01  
10,000  
0.01  
10,000  
0.01  
10,000  
100,000  
100,000  
100,000  
1,000,000  
10,000,000  
1,000,000  
10,000,000  
1,000,000  
10,000,000  
Frequency (Hz)  
Frequency (Hz)  
Frequency (Hz)  
23  
Y5V Dielectric  
Specifications and Test Methods  
Parameter/Test  
Operating Temperature Range  
Capacitance  
Y5V Specification Limits  
Measuring Conditions  
Temperature Cycle Chamber  
-30ºC to +85ºC  
Within specified tolerance  
5.0% for 50V DC rating  
7.0% for 25V DC rating  
9.0% for 16V DC rating  
12.5% for 10V DC rating  
100,000Mor 500M- µF,  
whichever is less  
Freq.: 1.0 kHz ± 10%  
Voltage: 1.0Vrms ± .2V  
For Cap > 10 µF, 0.5Vrms @ 120Hz  
Dissipation Factor  
Charge device with rated voltage for  
120 ± 5 secs @ room temp/humidity  
Charge device with 300% of rated voltage for  
1-5 seconds, w/charge and discharge current  
limited to 50 mA (max)  
Insulation Resistance  
Dielectric Strength  
No breakdown or visual defects  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
No defects  
Deflection: 2mm  
Test Time: 30 seconds  
±30%  
Resistance to  
Flexure  
1mm/sec  
Meets Initial Values (As Above)  
Stresses  
Insulation  
Resistance  
Initial Value x 0.1  
90 mm  
95% of each terminal should be covered  
with fresh solder  
Dip device in eutectic solder at 230 ± 5ºC  
for 5.0 ± 0.5 seconds  
Solderability  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
No defects, <25% leaching of either end terminal  
±20%  
Dip device in eutectic solder at 260ºC for 60  
seconds. Store at room temperature for 24 ± 2  
hours before measuring electrical properties.  
Resistance to  
Solder Heat  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
No visual defects  
±20%  
Step 1: -30ºC ± 2º  
Step 2: Room Temp  
30 ± 3 minutes  
3 minutes  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Appearance  
Capacitance  
Variation  
Dissipation  
Factor  
Insulation  
Resistance  
Dielectric  
Strength  
Thermal  
Shock  
Meets Initial Values (As Above)  
Meets Initial Values (As Above)  
Step 3: +85ºC ± 2º  
Step 4: Room Temp  
30 ± 3 minutes  
3 minutes  
Repeat for 5 cycles and measure after  
24 ±2 hours at room temperature  
Meets Initial Values (As Above)  
No visual defects  
Charge device with twice rated voltage in  
test chamber set at 85ºC ± 2ºC  
for 1000 hours (+48, -0)  
±30%  
Initial Value x 1.5 (See Above)  
Initial Value x 0.1 (See Above)  
Load Life  
Remove from test chamber and stabilize  
at room temperature for 24 ± 2 hours  
before measuring.  
Meets Initial Values (As Above)  
No visual defects  
Store in a test chamber set at 85ºC ± 2ºC/  
85% ± 5% relative humidity for 1000 hours  
(+48, -0) with rated voltage applied.  
±30%  
Load  
Humidity  
Initial Value x 1.5 (See above)  
Initial Value x 0.1 (See Above)  
Meets Initial Values (As Above)  
Remove from chamber and stabilize at  
room temperature and humidity for  
24 ± 2 hours before measuring.  
24  
Y5V Dielectric  
Capacitance Range  
PREFERRED SIZES ARE SHADED  
SIZE  
0201  
0402  
0603  
0805  
1206  
1210  
Soldering  
Reflow Only  
Reflow Only  
Reflow Only  
Reflow/Wave  
Reflow/Wave  
Reflow Only  
Packaging  
All Paper  
All Paper  
All Paper  
Paper/Embossed  
Paper/Embossed  
Paper/Embossed  
MM  
(in.)  
0.60 ± 0.03  
(0.024 ± 0.001)  
1.00 ± 0.10  
(0.040 ± 0.004)  
1.60 ± 0.15  
(0.063 ± 0.006)  
2.01 ± 0.20  
(0.079 ± 0.008)  
3.20 ± 0.20  
(0.126 ± 0.008)  
3.20 ± 0.20  
(0.126 ± 0.008)  
(L) Length  
MM  
(in.)  
0.30 ± 0.03  
(0.011 ± 0.001)  
0.50 ± 0.10  
(0.020 ± 0.004)  
.81 ± 0.15  
(0.032 ± 0.006)  
1.25 ± 0.20  
(0.049 ± 0.008)  
1.60 ± 0.20  
(0.063 ± 0.008)  
2.50 ± 0.20  
(0.098 ± 0.008)  
(W) Width  
MM  
(in.)  
0.15 ± 0.05  
(0.006 ± 0.002)  
0.25 ± 0.15  
(0.010 ± 0.006)  
0.35 ± 0.15  
(0.014 ± 0.006)  
0.50 ± 0.25  
(0.020 ± 0.010)  
0.50 ± 0.25  
(0.020 ± 0.010)  
.50 ± 0.25  
(0.020 ± 0.010)  
(t) Terminal  
WVDC  
6.3  
10  
16  
25  
50  
10  
16  
25  
50  
10  
16  
25  
50  
10  
16  
25  
50  
10  
16  
25  
50  
Cap  
(pF)  
820  
1000  
2200  
A
A
W
L
4700  
0.010  
0.022  
A
A
C
C
T
Cap  
(µF)  
A
A
C
C
G
G
C
0.047  
0.10  
0.22  
A
C
C
G
G
G
G
t
J
K
K
N
G
0.47  
1.0  
2.2  
G
G
K
N
N
N
N
M
G
N
N
N
M
M
4.7  
10.0  
22.0  
47.0  
M
Q
N
Q
Q
Q
Q
X
WVDC  
6.3  
10  
16  
25  
50  
10  
16  
25  
50  
10  
16  
25  
50  
10  
16  
25  
50  
10  
16  
25  
50  
SIZE  
0201  
0402  
0603  
0805  
1206  
1210  
Letter  
Max.  
A
0.33  
C
0.56  
E
0.71  
G
0.86  
J
K
1.02  
M
1.27  
N
1.40  
P
1.52  
Q
1.78  
X
2.29  
Y
2.54  
Z
2.79  
0.94  
Thickness  
(0.013)  
(0.022)  
(0.028)  
(0.034)  
(0.037)  
(0.040)  
(0.050)  
(0.055)  
(0.060)  
(0.070)  
(0.090)  
(0.100)  
(0.110)  
PAPER  
EMBOSSED  
25  
MLCC Tin/Lead Termination B”  
General Specifications  
AVX Corp ora tion will s up p ort thos e c us tome rs for  
commercial and military Multilayer Ceramic Capacitors with  
a te rmina tion c ons is ting of 5% minimum le a d. This  
termination is indicated by the use of a B” in the 12th  
position of the AVX Catalog Part Number. This fulfills AVX’s  
commitment to providing a full range of products to our  
customers. AVX has provided in the following pages a full  
range of values that we are currently offering in this special  
“B” termination. Please contact the factory if you require  
additional information on our MLCC Tin/Lead Termination  
“B” products.  
PART NUMBER (see page 2 for complete part number explanation)  
LD05  
A
101  
J
A
B
2
A
5
Size  
Dielectric  
Capacitance  
Capacitance  
Tolerance  
Failure  
Rate  
A = Not  
Applicable  
Terminations  
B = 5% min  
lead  
Packaging  
2 = 7" Reel  
4 = 13" Reel  
7 = Bulk Cass.  
9 = Bulk  
Special  
Code  
A = Std.  
Product  
Voltage  
6.3V = 6  
10V = Z  
16V = Y  
25V = 3  
50V = 5  
100V = 1  
200V = 2  
500V = 7  
LD02 - 0402  
C0G (NP0) = A Code (In pF)  
LD03 - 0603  
X7R = C  
X5R = D  
2 Sig. Digits +  
Number of  
Zeros  
B = ±.10 pF (<10pF)  
C = ±.25 pF (<10pF)  
D = ±.50 pF (<10pF)  
F = ±1% (10 pF)  
G = ±2% (10 pF)  
J = ±5%  
LD04 - 0504  
LD05 - 0805  
LD06 - 1206  
LD08 - 1808*  
LD10 - 1210  
Contact  
Factory  
For  
LD12 - 1812  
LD13 - 1825  
Multiples  
K = ±10%  
LD14 - 2225  
LD15 - 0204 LICC*  
LD20 - 2220  
LD16 - 0306 LICC  
LD17 - 0508 LICC  
LD18 - 0612 LICC  
*Contact factory  
ELECTRICAL GRAPHS  
NPO  
X7R  
X7S  
X5R  
Y5V  
Refer to page 4 for Electrical Graphs  
Refer to page 12 for Electrical Graphs  
Refer to page 16 for Electrical Graphs  
Refer to page 19 for Electrical Graphs  
Refer to page 23 for Electrical Graphs  
26  
MLCC Tin/Lead Termination B”  
Capacitance Range (NPO Dielectric)  
PREFERRED SIZES ARE SHADED  
SIZE  
LD02  
LD03  
LD05  
LD06  
Soldering  
Packaging  
Reflow Only  
All Paper  
Reflow Only  
All Paper  
Reflow/Wave  
Paper/Embossed  
Reflow/Wave  
Paper/Embossed  
MM  
(in.)  
1.00 ± 0.10  
(0.040 ± 0.004)  
1.60 ± 0.15  
(0.063 ± 0.006)  
2.01 ± 0.20  
(0.079 ± 0.008)  
3.20 ± 0.20  
(0.126 ± 0.008)  
(L) Length  
MM  
(in.)  
0.50 ± 0.10  
(0.020 ± 0.004)  
0.81 ± 0.15  
(0.032 ± 0.006)  
1.25 ± 0.20  
(0.049 ± 0.008)  
1.60 ± 0.20  
(0.063 ± 0.008)  
(W) Width  
MM  
(in.)  
0.25 ± 0.15  
(0.010 ± 0.006)  
0.35 ± 0.15  
(0.014 ± 0.006)  
0.50 ± 0.25  
(0.020 ± 0.010)  
0.50 ± 0.25  
(0.020 ± 0.010)  
(t) Terminal  
WVDC  
0.5  
1.0  
1.2  
1.5  
1.8  
2.2  
2.7  
3.3  
3.9  
4.7  
5.6  
6.8  
8.2  
10  
12  
15  
18  
22  
27  
33  
39  
47  
56  
68  
16  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
25  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
50  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
6.3  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
25  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
50  
100  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
16  
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
J
25  
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
J
J
J
J
J
J
J
J
J
J
J
N
N
N
N
50  
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
J
100  
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
J
200  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
16  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
25  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
50  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
M
100  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
P
P
P
P
P
200  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
Cap  
(pF)  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
82  
100  
120  
150  
180  
220  
270  
330  
390  
470  
560  
680  
820  
1000  
1200  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
0.010  
0.012  
0.015  
0.018  
0.022  
0.027  
0.033  
0.039  
0.047  
0.068  
0.082  
0.10  
J
J
J
J
J
J
J
J
J
J
J
M
Q
Q
Q
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
J
J
N
N
N
N
N
N
N
M
M
M
M
M
M
M
M
M
M
Cap  
(µF)  
W
L
T
t
WVDC  
16  
25  
50  
6.3  
25  
50  
100  
16  
25  
50  
100  
200  
16  
25  
50  
100  
200  
SIZE  
0402  
0603  
0805  
1206  
Letter  
Max.  
Thickness  
A
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.86  
(0.034)  
J
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
0.33  
(0.013)  
0.94  
(0.037)  
PAPER  
EMBOSSED  
27  
MLCC Tin/Lead Termination B”  
Capacitance Range (NPO Dielectric)  
PREFERRED SIZES ARE SHADED  
SIZE  
LD10  
LD12  
LD13  
LD20  
LD14  
Soldering  
Reflow/Wave  
Reflow Only  
Reflow Only  
Reflow Only  
Reflow Only  
Packaging  
Paper/Embossed  
3.20 ± 0.20  
(0.126 ± 0.008)  
All Embossed  
4.50 ± 0.30  
(0.177 ± 0.012)  
All Embossed  
4.50 ± 0.30  
(0.177 ± 0.012)  
All Embossed  
5.70 ± 0.40  
(0.225 ± 0.016)  
All Embossed  
5.72 ± 0.25  
(0.225 ± 0.010)  
MM  
(in.)  
(L) Length  
MM  
(in.)  
2.50 ± 0.20  
(0.098 ± 0.008)  
3.20 ± 0.20  
(0.126 ± 0.008)  
6.40 ± 0.40  
(0.252 ± 0.016)  
5.00 ± 0.40  
(0.197 ± 0.016)  
6.35 ± 0.25  
(0.250 ± 0.010)  
(W) Width  
MM  
(in.)  
0.50 ± 0.25  
(0.020 ± 0.010)  
0.61 ± 0.36  
(0.024 ± 0.014)  
0.61 ± 0.36  
(0.024 ± 0.014)  
0.64 ± 0.39  
(0.025 ± 0.015)  
0.64 ± 0.39  
(0.025 ± 0.015)  
(t) Terminal  
WVDC  
0.5  
1.0  
25  
50  
100  
200  
25  
50  
100  
200  
50  
100  
200  
50  
100  
200  
50  
100  
200  
Cap  
(pF)  
1.2  
1.5  
1.8  
2.2  
2.7  
3.3  
W
L
T
3.9  
4.7  
5.6  
6.8  
8.2  
t
10  
12  
15  
18  
22  
27  
33  
39  
47  
56  
68  
82  
100  
120  
150  
180  
220  
270  
330  
390  
470  
560  
680  
820  
1000  
1200  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
0.010  
0.012  
0.015  
0.018  
0.022  
0.027  
0.033  
0.039  
0.047  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
J
J
J
J
J
J
J
M
M
M
M
M
M
J
J
J
J
M
M
M
Q
Q
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
M
M
M
M
K
K
K
K
K
K
K
K
K
M
M
P
K
K
K
K
K
K
K
K
K
M
M
X
X
K
K
K
K
K
P
P
P
P
P
M
M
M
M
M
M
M
M
M
M
M
M
M
M
P
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
X
X
X
X
X
X
X
X
X
X
X
X
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
P
Y
Y
Y
Y
P
P
P
P
P
P
P
P
P
P
P
P
P
P
Y
Y
Y
Y
Z
Z
X
X
X
Cap  
(µF)  
P
P
P
P
P
P
P
0.068  
0.082  
0.10  
P
WVDC  
25  
50  
100  
200  
25  
50  
100  
200  
50  
100  
200  
50  
100  
200  
50  
100  
200  
SIZE  
1210  
1812  
1825  
2220  
2225  
Letter  
Max.  
Thickness  
A
0.33  
(0.013)  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.86  
(0.034)  
J
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
Q
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
0.94  
(0.037)  
1.52  
1.78  
(0.070)  
EMBOSSED  
(0.060)  
PAPER  
28  
MLCC Tin/Lead Termination B”  
Capacitance Range (X7R Dielectric)  
PREFERRED SIZES ARE SHADED  
SIZE  
LD02  
LD03  
LD05  
LD06  
Soldering  
Packaging  
Reflow Only  
All Paper  
Reflow Only  
All Paper  
Reflow/Wave  
Paper/Embossed  
Reflow/Wave  
Paper/Embossed  
MM  
(in.)  
1.00 ± 0.10  
(0.040 ± 0.004)  
1.60 ± 0.15  
(0.063 ± 0.006)  
2.01 ± 0.20  
(0.079 ± 0.008)  
3.20 ± 0.20  
(0.126 ± 0.008)  
(L) Length  
MM  
(in.)  
0.50 ± 0.10  
(0.020 ± 0.004)  
0.81 ± 0.15  
(0.032 ± 0.006)  
1.25 ± 0.20  
(0.049 ± 0.008)  
1.60 ± 0.20  
(0.063 ± 0.008)  
(W) Width  
MM  
(in.)  
0.25 ± 0.15  
(0.010 ± 0.006)  
0.35 ± 0.15  
(0.014 ± 0.006)  
0.50 ± 0.25  
(0.020 ± 0.010)  
0.50 ± 0.25  
(0.020 ± 0.010)  
(t) Terminal  
WVDC  
100  
120  
150  
180  
220  
270  
330  
390  
470  
560  
680  
820  
6.3  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
10  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
16  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
25  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
50  
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
6.3  
10  
16  
25  
50 100 200  
10  
16  
25  
50  
100  
200  
10  
16  
25  
50  
100  
200  
Cap  
(pF)  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
J
J
J
J
J
J
J
J
J
J
J
J
M
E
E
E
E
E
E
E
E
E
E
E
E
E
E
E
J
J
J
J
J
J
J
J
J
E
E
E
E
E
E
E
E
J
J
J
J
J
J
J
J
J
J
J
J
J
1000  
1200  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
0.010  
0.012  
0.015  
0.018  
0.022  
0.027  
0.033  
0.039  
0.047  
0.056  
0.068  
0.082  
0.10  
0.12  
0.15  
0.18  
0.22  
0.27  
0.33  
0.47  
0.56  
0.68  
0.82  
1.0  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
M
M
P
P
Cap  
(µF)  
J
M
M
J
M
M
M
M
M
N
N
N
N
N
M
M
M
J
M
M
Q
M
M
M
M
M
M
M
M
M
M
1.2  
1.5  
1.8  
2.2  
3.3  
P
W
L
Q
T
4.7  
10  
22  
47  
t
100  
WVDC  
6.3  
10  
16  
25  
50  
6.3  
10  
16  
25  
50 100 200  
10  
16  
25  
50  
100  
200  
10  
16  
25  
50  
100  
200  
SIZE  
0402  
0603  
0805  
1206  
Letter  
Max.  
Thickness  
A
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.86  
(0.034)  
J
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
X
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
0.33  
(0.013)  
0.94  
(0.037)  
1.78  
(0.070)  
2.29  
(0.090)  
PAPER  
EMBOSSED  
29  
MLCC Tin/Lead Termination B”  
Capacitance Range (X7R Dielectric)  
PREFERRED SIZES ARE SHADED  
SIZE  
LD10  
LD12  
LD13  
LD14  
Soldering  
Packaging  
Reflow/Wave  
Paper/Embossed  
Reflow Only Reflow Only Reflow Only  
All Embossed All Embossed All Embossed  
MM  
(in.)  
MM  
(in.)  
MM  
(in.)  
3.20 ± 0.20  
(0.126 ± 0.008)  
2.50 ± 0.20  
(0.098 ± 0.008)  
0.50 ± 0.25  
(0.020 ± 0.010)  
4.50 ± 0.30  
(0.177 ± 0.012) (0.177 ± 0.012) (0.225 ± 0.010)  
3.20 ± 0.20 6.40 ± 0.40 6.35 ± 0.25  
(0.126 ± 0.008) (0.252 ± 0.016) (0.250 ± 0.010)  
0.61 ± 0.36 0.61 ± 0.36 0.64 ± 0.39  
(0.024 ± 0.014) (0.024 ± 0.014) (0.025 ± 0.015)  
4.50 ± 0.30  
5.72 ± 0.25  
(L) Length  
(W) Width  
(t) Terminal  
WVDC  
10  
16  
25  
50  
100  
50  
100  
50  
100  
50  
100  
Cap  
(pF)  
100  
120  
150  
180  
220  
W
L
T
270  
330  
390  
470  
560  
t
680  
820  
1000  
1200  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
0.010  
0.012  
0.015  
0.018  
0.022  
0.027  
0.033  
0.039  
0.047  
0.056  
0.068  
0.082  
0.10  
0.12  
0.15  
0.18  
0.22  
0.27  
0.33  
0.47  
0.56  
0.68  
0.82  
1.0  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
P
P
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
P
P
Cap  
(µF)  
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
M
M
M
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
K
M
M
P
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
M
N
M
M
M
M
N
Q
Q
1.2  
1.5  
1.8  
2.2  
N
N
M
M
M
P
3.3  
4.7  
10  
22  
47  
100  
WVDC  
10  
16  
25  
50  
100  
50  
100  
50  
100  
50  
100  
SIZE  
1210  
1812  
1825  
2225  
Letter  
Max.  
Thickness  
A
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.86  
(0.034)  
J
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
0.33  
(0.013)  
0.94  
(0.037)  
PAPER  
EMBOSSED  
30  
MLCC Tin/Lead Termination B”  
Capacitance Range (X5R Dielectric)  
PREFERRED SIZES ARE SHADED  
SIZE  
LD02  
LD03  
LD05  
LD06  
LD10  
Soldering  
Packaging  
Reflow Only  
All Paper  
Reflow Only  
All Paper  
Reflow/Wave  
Paper/Embossed  
Reflow/Wave  
Paper/Embossed  
Reflow/Wave  
Paper/Embossed  
MM  
(in.)  
1.00 ± 0.10  
(0.040 ± 0.004)  
1.60 ± 0.15  
(0.063 ± 0.006)  
2.01 ± 0.20  
(0.079 ± 0.008)  
3.20 ± 0.20  
(0.126 ± 0.008)  
3.20 ± 0.20  
(0.126 ± 0.008)  
(L) Length  
MM  
(in.)  
0.50 ± 0.10  
(0.020 ± 0.004)  
0.81 ± 0.15  
(0.032 ± 0.006)  
1.25 ± 0.20  
(0.049 ± 0.008)  
1.60 ± 0.20  
(0.063 ± 0.008)  
2.50 ± 0.20  
(0.098 ± 0.008)  
(W) Width  
MM  
(in.)  
0.25 ± 0.15  
(0.010 ± 0.006)  
0.35 ± 0.15  
(0.014 ± 0.006)  
0.50 ± 0.25  
(0.020 ± 0.010)  
0.50 ± 0.25  
(0.020 ± 0.010)  
0.50 ± 0.25  
(0.020 ± 0.010)  
(t) Terminal  
WVDC  
6.3  
10  
6.3  
25  
10  
16  
10  
16  
25  
16  
Cap  
(pF)  
100  
150  
220  
330  
470  
680  
1000  
W
L
T
t
1200  
1500  
1800  
2200  
2700  
3300  
3900  
4700  
5600  
6800  
8200  
0.010  
0.012  
0.015  
0.018  
0.022  
0.027  
0.033  
0.039  
0.047  
0.056  
0.068  
0.082  
0.10  
0.12  
0.15  
0.18  
0.22  
0.27  
0.33  
0.47  
0.56  
0.68  
0.82  
1.0  
Cap  
(µF  
C
C
C
G
G
C
G
G
G
N
N
G
G
N
N
M
Q
N
N
N
1.2  
1.5  
1.8  
2.2  
Q
Q
3.3  
4.7  
Q
Q
Q
6.8  
10  
22  
47  
100  
WVDC  
6.3  
10  
6.3  
25  
10  
16  
SIZE  
0402  
0603  
0805  
1206  
1210  
Letter  
Max.  
Thickness  
A
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.86  
(0.034)  
J
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
0.33  
(0.013)  
0.94  
(0.037)  
1.40  
(0.055)  
PAPER  
EMBOSSED  
31  
Automotive MLCC  
Automotive  
GENERAL DESCRIPTION  
AVX Corporation has supported the Automotive Industry requirements for  
Multilayer Ceramic Capacitors consistently for more than 10 years. Products  
have been developed and tested specifically for automotive applications and  
all manufacturing facilities are QS9000 and VDA 6.4 approved.  
As part of our sustained investment in capacity and state of the art  
technology, we are now transitioning from the established Pd/Ag electrode  
system to a Base Metal Electrode system (BME).  
AVX is using AECQ200 as the qualification vehicle for this transition. A  
detailed qualification package is available on request and contains results on  
a range of part numbers including:  
X7R dielectric components containing BME electrode and copper  
terminations with a Ni/Sn plated overcoat.  
X7R dielectric components BME electrode and soft terminations with a  
Ni/Sn plated overcoat.  
NP0 dielectric components containing Pd/Ag electrode and silver termi-  
nation with a Ni/Sn plated overcoat.  
HOW TO ORDER  
0805  
5
C
104  
K
4
2
A
T
Size  
0603  
0805  
1206  
1210  
1812  
Voltage Dielectric  
Capacitance  
Code (In pF)  
2 Significant  
Digits + Number  
of Zeros  
Capacitance  
Tolerance  
J = ±5%  
K = ±10%  
M = ±20%  
Failure Rate  
4 = Automotive  
Packaging  
2 = 7" Reel  
4 = 13" Reel  
Special Code  
A = Std. Product  
Terminations  
6.3V = 6  
10V = Z  
16V = Y  
25V = 3  
50V = 5  
100V = 1  
200V = 2  
NP0 = A  
X7R = C  
T = Plated Ni and Sn  
Z = Soft Termination  
U = Conductive Epoxy  
e.g. 10µF = 106  
COMMERCIAL VS AUTOMOTIVE MLCC PROCESS COMPARISON  
Commercial  
Automotive  
Administrative  
Design  
Standard Part Numbers.  
No restriction on who purchases these parts.  
Specific Automotive Part Number. Used to control  
supply of product to Automotive customers.  
Minimum ceramic thickness of 0.020"  
Side & End Margins = 0.003" min  
As per EIA RS469  
Minimum Ceramic thickness of 0.029" (0.74mm)  
on all X7R product.  
Dicing  
Side & End Margins = 0.004" min  
Cover Layers = 0.005" min  
Lot Qualification  
(Destructive Physical  
Analysis - DPA)  
Increased sample plan –  
stricter criteria.  
Visual/Cosmetic Quality  
Application Robustness  
Standard process and inspection  
100% inspection  
Standard sampling for accelerated  
wave solder on X7R dielectrics  
Increased sampling for accelerated wave solder on  
X7R and NP0 followed by lot by lot reliability testing.  
All Tests have Accept/Reject Criteria 0/1  
32  
Automotive MLCC  
NP0/X7R Dielectric  
SOFT TERMINATION FEATURES  
a) Bend Test  
b) Temperature Cycle testing  
The capacitor is soldered to the PC Board as shown:  
Soft Termination” has the ability to withstand at least  
1000 cycles between –55°C and +125°C  
1mm/sec  
90 mm  
Typical bend test results are shown below:  
Style  
Conventional Term  
Soft Term  
0603  
0805  
1206  
>2mm  
>2mm  
>2mm  
>5  
>5  
>5  
ELECTRODE AND TERMINATION OPTIONS  
NP0 DIELECTRIC  
NP0 Ag/Pd Electrode  
Nickel Barrier Termination  
PCB Application  
Sn  
Ni  
Ag  
Figure 1 Termination Code T  
X7R DIELECTRIC  
X7R Nickel Electrode  
X7R Dielectric  
Soft Termination  
PCB Application  
PCB Application  
Ni  
Ni  
Cu  
Sn  
Ni  
Epoxy  
Ni  
Cu  
Sn  
Figure 2 Termination Code T  
Figure 3 Termination Code Z  
Conductive Epoxy Termination  
Hybrid Application  
Ni  
Cu  
Termination  
Conductive  
Epoxy  
Figure 4 Termination Code U  
33  
NP0 Automotive  
Capacitance Range (Ni Barrier Termination)  
0603  
0805  
1206  
1210  
1812  
25V  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
50V  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
100V  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
25V  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
50V  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
100V  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
25V  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
50V  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
100V  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
Q
Q
25V  
50V  
100V  
200V  
50V  
100V  
R47  
R51  
R56  
R62  
R68  
R75  
R82  
R91  
1R0  
1R2  
1R5  
1R8  
2R0  
2R2  
2R4  
2R7  
3R0  
3R3  
3R6  
3R9  
4R3  
4R7  
5R1  
5R6  
6R2  
6R8  
7R5  
8R2  
9R1  
100  
120  
150  
180  
220  
270  
330  
390  
470  
510  
560  
680  
820  
101  
121  
151  
181  
221  
271  
331  
391  
471  
561  
681  
821  
102  
122  
152  
182  
222  
272  
332  
392  
472  
562  
682  
822  
103  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
J
J
J
M
M
M
M
M
M
P
M
M
M
M
M
M
M
M
M
M
M
K
K
K
K
K
K
P
M
M
M
M
25V  
M
M
M
M
25V  
25V  
50V  
100V  
25V  
50V  
100V  
50V  
100V  
50V  
100V  
200V  
50V  
100V  
0603  
0805  
1206  
1210  
1812  
Letter  
Max.  
Thickness  
A
0.33  
(0.013)  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.86  
(0.034)  
J
K
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
Y
2.54  
(0.100)  
Z
2.79  
(0.110)  
0.94  
(0.037)  
1.02  
(0.040)  
2.29  
(0.090)  
PAPER  
EMBOSSED  
34  
BME X7R Automotive  
Capacitance Range (Ni Barrier Termination)  
0603  
0805  
1206  
1210  
1812  
16V  
25V  
50V 100V 200V 16V  
25V  
50V 100V 200V  
16V  
25V  
50V  
100V 200V  
16V  
25V  
50V  
100V 200V 16V  
25V  
50V 100V 200V  
101  
121  
151  
181  
221  
271  
331  
391  
471  
561  
681  
821  
102  
122  
152  
182  
222  
272  
332  
392  
472  
562  
682  
822  
103  
123  
153  
183  
223  
273  
333  
393  
473  
563  
683  
823  
104  
124  
154  
184  
224  
274  
334  
394  
474  
564  
684  
824  
105  
155  
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
G
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
M
M
K
K
K
K
K
M
M
M
M
P
J
J
M
M
M
M
M
M
M
K
K
K
K
K
K
M
M
P
P
P
P
P
K
K
K
K
K
K
M
M
P
K
K
K
K
K
K
M
M
P
K
K
K
K
K
K
K
M
M
X
X
X
X
X
X
X
K
K
K
K
K
K
K
M
M
X
X
X
X
X
X
X
K
K
K
K
K
K
K
M
M
X
X
X
X
X
X
X
J
J
M
M
M
N
N
N
N
M
M
M
M
M
M
P
P
P
P
P
P
M
M
M
M
M
M
P
P
P
P
16V  
25V  
50V 100V 200V 16V  
25V  
50V 100V 200V  
16V  
25V  
50V  
100V 200V  
16V  
25V  
50V  
100V 200V 16V  
25V  
50V 100V 200V  
0603  
0805  
1206  
1210  
1812  
Letter  
Max.  
Thickness  
A
0.33  
(0.013)  
C
0.56  
(0.022)  
E
0.71  
(0.028)  
G
0.86  
(0.034)  
J
K
1.02  
(0.040)  
M
1.27  
(0.050)  
N
1.40  
(0.055)  
P
1.52  
(0.060)  
Q
1.78  
(0.070)  
X
2.29  
(0.090)  
Y
2.54  
(0.100)  
Z
0.94  
(0.037)  
2.79  
(0.110)  
PAPER  
EMBOSSED  
35  
MLCC with Soft Termination  
General Specifications  
GENERAL DESCRIPTION  
With increased requirements from the automotive industry for additional  
component robustness, AVX recognized the need to produce a MLCC with  
enhanced mechanical strength. It was noted that many components may be  
subject to severe flexing and vibration when used in various under the  
bonnet automotive applications.  
To satisfy the requirement for enhanced mechanical strength, AVX had to  
find a way of ensuring electrical integrity is maintained whilst external forces  
are being applied to the component. It was found that the structure of the  
termination needed to be flexible and after much research and development,  
a “soft termination” was found. This soft termination is designed to enhance  
the mechanical flexure and temperature cycling performance of a standard  
ceramic capacitor with an X7R dielectric. The indus try s ta nda rd for  
flexure is 2 mm minimum with Soft Termination. AVX guarantees a  
minimum flexure of 5 mm, without any internal cracks. Beyond 5mm  
g e ne ra lly the c o m p o ne nt will o p e n. The ind us try s ta nd a rd fo r  
temperature cycling is 1000 cycles, AVX guarantees 3000 cycles.  
APPLICATIONS  
High Flexure Stress Circuit Boards  
As well as for automotive applications the Soft Termination will provide  
Design Engineers with a satisfactory solution when designing PCBs which  
may be subject to high levels of board flexure.  
e.g. Depanelization: Components near  
edges of board.  
PRODUCT ADVANTAGES  
Variable Temperature Applications  
• High mechanical performance able to withstand, 5mm bend test  
guaranteed.  
Open failure mode is apparent when products are overstressed  
by 5mm.  
Soft termination offers improved reliability  
performance in applications where there is  
temperature variation.  
e.g. All kind of engine s ens ors : Direct  
connection to battery rail.  
Increased temperature cycling performance, 3000 cycles and beyond.  
Flexible termination system.  
Automotive Applications  
Reduction in circuit board flex failures.  
Improved reliability.  
Base metal electrode system.  
• Excellent mechanical performance and  
thermo mechanical performance.  
Automotive or commercial grade products available.  
HOW TO ORDER  
0805  
5
C
104  
K
2
A
A
Z
Style  
0603  
0805  
1206  
1210  
1812  
Voltage  
6 = 6.3V  
Z = 10V  
Y = 16V  
3 = 25V  
5 = 50V  
1 = 100V  
2 = 200V  
Dielectric  
C = X7R  
Capacitance  
Code (In pF)  
2 Sig Digits +  
Number of Zeros  
e.g., 104 = 100nF  
Capacitance  
Tolerance  
J = ±5%  
K = ±10%  
M = ±20%  
Packaging  
2 = 7" reel  
4 = 13" reel  
Special Code  
A = Std. Product  
Failure  
Rate  
A=Commercial  
4 = Automotive  
Terminations  
Z = Soft  
Termination  
36  
MLCC with Soft Termination  
Specifications and Test Methods  
BOARD BEND TEST PROCEDURE  
PERFORMANCE TESTING  
According to AEC-Q200  
AEC-Q200 Qualification:  
• Created by the Automotive Electronics  
Council  
Test Procedure as per AEC-Q200:  
Sample size:  
Span: 90mm  
20 components  
LOADING  
KNIFE  
Minimum deflection spec: 2 mm  
• Specification defining stress  
test qualification for  
passive components  
Components soldered onto FR4 PCB (Figure 1)  
MOUNTING  
ASSEMBLY  
Board connected electrically to the test equipment  
(Figure 2)  
DIGITAL  
CALIPER  
Testing:  
BEND TESTPLATE  
Key tests used to compare  
soft termination to  
AEC-Q200 qualification:  
• Bend Test  
CONNECTOR  
CONTROL  
PANEL  
CONTROL PANEL  
• Temperature Cycle Test  
Fig 2 - Board Bend test  
equipment  
Fig 1 - PCB layout with electrical connections  
BOARD BEND TEST RESULTS  
AEC-Q200 Vrs AVX Soft Termination Bend Test  
0603  
0805  
12  
10  
8
6
4
2
12  
10  
8
6
4
2
AVX ENHANCED SOFT  
TERMINATION BEND TEST  
PROCEDURE  
0
0
NPO  
X7R  
X7R soft term  
NPO  
X7R  
X7R soft term  
Bend Test  
The capacitor is soldered to the printed circuit  
board as shown and is bent up to 10mm at  
1mm per second:  
1210  
1206  
12  
10  
8
12  
10  
8
6
4
2
0
6
4
2
0
Max. = 10mm  
NPO  
X7R  
X7R soft term  
NPO  
X7R  
X7R soft term  
TABLE SUMMARY  
90mm  
Typical bend test results are shown below:  
Style  
0603  
0805  
1206  
Conventional Termination  
Soft Termination  
>5mm  
>5mm  
>2mm  
>2mm  
>2mm  
• The board is placed on 2 supports 90mm  
apart (capacitor side down)  
• The row of capacitors is aligned with the  
load stressing knife  
>5mm  
TEMPERATURE CYCLE TEST PROCEDURE  
Test Procedure as per AEC-Q200:  
Max. = 10mm  
The test is conducted to determine the resistance of the  
component when it is exposed to extremes of alternating  
high and low temperatures.  
• Sample lot size quantity 77 pieces  
• TC chamber cycle from -55ºC to +125ºC for 1000 cycles  
Interim electrical measurements at 250, 500, 1000 cycles  
• Measure parameter capacitance dissipation factor,  
insulation resistance  
• The load is applied and the deflection where  
the part starts to crack is recorded (Note:  
Equipment detects the start of the crack  
using a highly sensitive current detection  
circuit)  
Test Temperature Profile (1 cycle)  
+1250  
+250  
C
C
• The maximum deflection capability is 10mm  
-550  
C
1 hour 12mins  
37  
MLCC with Soft Termination  
Specifications and Test Methods  
BEYOND 1000 CYCLES: TEMPERATURE CYCLE TEST RESULTS  
0603  
0805  
10  
8
10  
8
6
6
4
4
2
2
0
0
0
500 1000 1500 2000 2500 3000  
0
500 1000 1500 2000 2500 3000  
1206  
1210  
10  
8
10  
8
6
6
4
4
2
2
0
0
0
500 1000 1500 2000 2500 3000  
0
500 1000 1500 2000 2500 3000  
AEC-Q200 specification states  
1000 cycles compared to AVX  
3000 temperature cycles.  
Soft Term - No Defects up to 3000 cycles  
SOFT TERMINATION TEST SUMMARY  
• Qualified product by using the AEC-Q200 test/specifica-  
tion with the exception of using AVX 3000 temperature  
cycles (up to +150°C bend test guaranteed greater than  
5mm).  
• Board bend test improvement by a factor of 2 to 4 times.  
• Temperature Cycling:  
– 0% Failure up to 3000 cycles  
– No ESR change up to 3000 cycles  
• S oft Te rmina tion p rovid e s imp rove d p e rforma nc e  
compared to standard termination systems.  
WITHOUT SOFT TERMINATION  
WITH SOFT TERMINATION  
Major fear is of latent board flex failures.  
Far superior mechanical performance.  
Generally open failure mode beyond  
5mm flexure.  
38  
MLCC with Soft Termination  
X7R Dielectric Capacitance Range  
0603  
0805  
1206  
1210  
1812  
16V  
25V  
50V  
100V  
16V  
25V  
50V  
100V  
16V  
25V  
50V  
100V  
16V  
25V  
50V  
100V  
16V  
25V  
50V  
100V  
101  
121  
151  
181  
221  
271  
331  
391  
471  
561  
681  
821  
102  
122  
152  
182  
222  
272  
332  
392  
472  
562  
682  
822  
103  
123  
153  
183  
223  
273  
333  
393  
473  
563  
683  
823  
104  
124  
154  
184  
224  
274  
334  
394  
474  
564  
684  
824  
105  
155  
185  
225  
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
N
N
N
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
M
M
M
M
M
M
M
M
K
K
K
K
K
M
M
M
P
J
J
M
M
M
M
P
Q
K
K
K
K
K
K
M
M
P
P
P
P
P
K
K
K
K
K
K
M
M
P
K
K
K
K
K
K
M
M
P
K
K
K
K
K
K
K
M
M
M
X
X
X
X
X
X
K
K
K
K
K
K
K
M
M
M
X
X
X
X
X
X
K
K
K
K
K
K
K
M
M
M
X
X
X
X
X
X
K
K
K
K
K
M
M
X
X
X
X
X
J
J
M
M
M
N
N
N
N
M
M
M
M
M
M
Q
Q
P
P
P
P
P
P
M
M
M
M
M
M
P
P
P
P
16V  
25V  
50V  
100V  
16V  
25V  
50V  
100V  
16V  
25V  
50V  
100V  
16V  
25V  
50V  
100V  
16V  
25V  
50V  
100V  
0603  
0805  
J
1206  
1210  
1812  
Letter  
Max.  
Thickness  
A
0.33  
(0.013)  
C
E
G
K
M
N
P
Q
X
Y
Z
0.56  
(0.022)  
0.71  
(0.028)  
0.86  
(0.034)  
0.94  
(0.037)  
1.02  
(0.040)  
1.27  
(0.050)  
1.40  
(0.055)  
1.52  
(0.060)  
1.78  
(0.070)  
2.29  
(0.090)  
2.54  
(0.100)  
2.79  
(0.110)  
PAPER  
EMBOSSED  
= Range extension parts  
39  
Capacitor Array  
Capacitor Array (IPC)  
BENEFITS OF USING CAPACITOR  
ARRAYS  
AVX capacitor arrays offer designers the opportunity to  
lower placement costs, increase assembly line output  
through lower component count per board and to reduce  
real estate requirements.  
For high volume users of cap arrays using the very latest  
placement equipment capable of placing 10 components  
per second, the increase in throughput can be very signifi-  
cant and can have the overall effect of reducing the number  
of placement machines required to mount components:  
Reduced Costs  
Placement costs are greatly reduced by effectively placing  
one device instead of four or two. This results in increased  
throughput and translates into savings on machine time.  
Inventory levels are lowered and further savings are made  
on solder materials, etc.  
If 120 million 2-element arrays or 40 million 4-element arrays  
were placed in a year, the requirement for placement  
equipment would be reduced by one machine.  
During a 20Hr operational day a machine places 720K  
components. Over a working year of 167 days the machine  
can place approximately 120 million. If 2-element arrays are  
mounted instead of discrete components, then the number  
of placements is reduced by a factor of two and in the  
scenario where 120 million 2-element arrays are placed  
there is a saving of one pick and place machine.  
Space Saving  
Space savings can be quite dramatic when compared to  
the use of discrete chip capacitors. As an example, the  
0508 4-element array offers a space reduction of >40% vs.  
4 x 0402 discrete capacitors and of >70% vs. 4 x 0603  
discrete capacitors. (This calculation is dependent on the  
spacing of the discrete components.)  
Smaller volume users can also benefit from replacing  
discrete components with arrays. The total number of  
placements is reduced thus creating spare capacity on  
placement machines. This in turn generates the opportunity  
to increase overall production output without further invest-  
ment in new equipment.  
Increased Throughput  
Assuming that there are 220 passive components placed in  
a mobile phone:  
A reduction in the passive count to 200 (by replacing  
discrete components with arrays) results in an increase in  
throughput of approximately 9%.  
A reduction of 40 placements increases throughput by 18%.  
W2A (0508) Capacitor Arrays  
4 pcs 0402 Capacitors  
=
1 pc 0508 Array  
1.88  
(0.074)  
1.4  
1.0  
(0.055) (0.039)  
5.0 (0.197)  
AREA = 7.0mm2 (0.276 in2)  
2.1 (0.083)  
AREA = 3.95mm2 (0.156 in2)  
The 0508 4-element capacitor array gives a PCB space saving of over 40%  
vs four 0402 discretes and over 70% vs four 0603 discrete capacitors.  
W3A (0612) Capacitor Arrays  
4 pcs 0603 Capacitors  
=
1 pc 0612 Array  
2.0  
(0.079)  
2.3  
(0.091)  
1.5  
(0.059)  
6.0 (0.236)  
AREA = 13.8mm2 (0.543 in2)  
3.2 (0.126)  
AREA = 6.4mm2 (0.252 in2)  
The 0612 4-element capacitor array gives a PCB space saving of over 50%  
vs four 0603 discretes and over 70% vs four 0805 discrete capacitors.  
40  
Capacitor Array  
NP0/C0G  
X7R/X5R  
SIZE  
# Elements  
Soldering  
0405  
2
0508  
0508  
4
0612  
4
SIZE  
# Elements  
Soldering  
0405  
2
0508  
2
0508  
4
0612  
4
2
Reflow Only  
Reflow/Wave  
Reflow/Wave  
Reflow/Wave  
Reflow Only  
Reflow/Wave  
Reflow/Wave  
Reflow/Wave  
Packaging  
All Paper  
All Paper  
Paper/Embossed  
Paper/Embossed  
Packaging  
All Paper  
All Paper  
Paper/Embossed  
Paper/Embossed  
MM  
1.00 ± 0.15  
1.30 ± 0.15  
(0.051 ± 0.006)  
1.30 ± 0.15  
(0.051 ± 0.006)  
1.60 ± 0.150  
(0.063 ± 0.006)  
MM 1.00 ± 0.15  
(in.) (0.039 ± 0.006)  
1.30 ± 0.15  
(0.051 ± 0.006)  
1.30 ± 0.15  
(0.051 ± 0.006)  
1.60 ± 0.20  
(0.063 ± 0.008)  
Length  
Length  
(in.) (0.039 ± 0.006)  
MM 1.37 ± 0.15  
(in.) (0.054 ± 0.006)  
2.10 ± 0.15  
(0.083 ± 0.006)  
2.10 ± 0.15  
(0.083 ± 0.006)  
3.20 ± 0.20  
(0.126 ± 0.008)  
MM 1.37 ± 0.15  
(in.) (0.054 ± 0.006)  
2.10 ± 0.15  
(0.083 ± 0.006)  
2.10 ± 0.15  
(0.083 ± 0.006)  
3.20 ± 0.20  
(0.126 ± 0.008)  
Width  
Max.  
Width  
Max.  
MM  
0.66  
0.94  
0.94  
1.35  
MM  
0.66  
0.94  
0.94  
1.35  
Thickness (in.)  
(0.026)  
(0.037)  
(0.037)  
(0.053)  
Thickness (in.)  
(0.026)  
(0.037)  
(0.037)  
(0.053)  
WVDC  
16  
25  
50  
16  
25  
50 100  
16  
25  
50 100  
16 25 50 100  
WVDC  
10 16 25 50 10 16 25 50 100 16  
25  
50 100 16  
25  
50  
100  
Cap  
(pF)  
1.0  
1.2  
1.5  
Cap  
(pF)  
100  
120  
150  
1.8  
2.2  
2.7  
180  
220  
270  
3.3  
3.9  
4.7  
330  
390  
470  
5.6  
6.8  
8.2  
560  
680  
820  
10  
12  
15  
1000  
1200  
1500  
18  
22  
27  
1800  
2200  
2700  
33  
39  
47  
3300  
3900  
4700  
56  
68  
82  
5600  
6800  
8200  
100  
120  
150  
Cap 0.010 µF  
0.012  
0.015  
180  
220  
270  
0.018  
0.022  
0.027  
330  
390  
470  
0.033  
0.039  
0.047  
560  
680  
820  
0.056  
0.068  
0.082  
1000  
1200  
1500  
0.10  
0.12  
0.15  
1800  
2200  
2700  
0.18  
0.22  
0.27  
3300  
3900  
4700  
0.33  
0.47  
0.56  
5600  
6800  
8200  
0.68  
0.82  
1.0  
Cap 0.010  
(µF)  
1.2  
1.5  
1.8  
2.2  
3.3  
4.7  
10  
22  
47  
100  
= X5R  
= X7R  
= NP0/C0G  
41  
Capacitor Array  
Multi-Value Capacitor Array (IPC)  
GENERAL DESCRIPTION  
A recent addition to the array product range is the Multi-  
Value Capacitor Array. These devices combine two different  
capacitance values in standard Cap Arraypackages and  
are available with a maximum ratio between the two capaci-  
tance values of 100:1. The multi-value array is currently  
available in the 0405 and 0508 2-element styles and also in  
the 0612 4-element style.  
ADVANTAGES OF THE MULTI-VALUE  
CAPACITOR ARRAYS  
Enhanced Performance Due to Reduced Parasitic  
Inductance  
When connected in parallel, not only do discrete capacitors  
of different values give the desired self-resonance, but an  
additional unwanted parallel resonance also results. This  
parallel resonance is induced between each capacitor's  
self-resonant frequencies and produces a peak in imped-  
ance response. For decoupling and bypassing applications  
this peak will result in a frequency band of reduced decou-  
pling and in filtering applications reduced attenuation.  
Whereas to date AVX capacitor arrays have been suited to  
applications where multiple capacitors of the same value are  
used, the multi-value array introduces a new flexibility to the  
range. The multi-value array can replace discrete capacitors  
of different values and can be used for broadband decou-  
pling applications. The 0508 x 2 element multi-value array  
would be particularly recommended in this application.  
Another application is filtering the 900/1800 or 1900MHz  
noise in mobile phones. The 0405 2-element, low capaci-  
tance value NP0, (C0G) device would be suited to this  
application, in view of the space saving requirements of  
mobile phone manufacturers.  
The multi-value capacitor array, combining capacitors in one  
unit, virtually eliminates the problematic parallel resonance,  
by minimizing parasitic inductance between the capacitors,  
thus enhancing the broadband decoupling/filtering perfor-  
mance of the part.  
Reduced ESR  
An advantage of connecting two capacitors in parallel is a  
significant reduction in ESR. However, as stated above,  
using discrete components brings with it the unwanted side  
effect of parallel resonance. The multi-value cap array is  
an excellent alternative as not only does it perform the  
same function as parallel capacitors but also it reduces the  
uncertainty of the frequency response.  
HOW TO ORDER  
W
2
A
2
Y
C
102M  
104M  
A
T
2A  
1st Value  
2nd Value  
Style  
Case  
Size  
1 = 0405  
2 = 0508  
3 = 0612  
Array Number  
of Caps  
Voltage  
6 = 6.3V  
Z = 10V  
Y = 16V  
3 = 25V  
5 = 50V  
1 = 100V  
Dielectric  
A = NP0  
C = X7R  
D = X5R  
Capacitance Capacitance Failure  
Termination  
Code  
T = Plated Ni  
and Sn  
Packaging &  
Quantity  
Code (In pF)  
2 Sig. Digits +  
Number of  
Zeros  
Tolerance  
K = ±10%  
M = ±20%  
Rate  
Code  
2A = 7" Reel (4000)  
4A = 13" Reel (10000)  
2F = 7" Reel (1000)  
IMPEDANCE VS FREQUENCY  
Cap (Min/Max)  
1
0.8  
0.6  
0.4  
0.2  
NPO  
X5R/X7R  
221/104  
221/104  
101/103  
2xDiscrete Caps (0603)  
0612 4-element  
0508 2-element  
0405 2-element  
100/471  
100/471  
100/101  
• Max. ratio between the two cap values is 1:100.  
Multi Value Cap (0508)  
• The voltage of the higher capacitance value dictates  
the voltage of the multi-value part.  
0
1
• Only combinations of values within a specific dielectric  
range are possible.  
10  
100  
1000  
Frequency (MHz)  
42  
Capacitor Array  
PART & PAD LAYOUT DIMENSIONS  
millimeters (inches)  
0405 - 2 Element  
PAD LAYOUT  
0612 - 4 Element  
PAD LAYOUT  
W
W
E
E
X
X
P
D
D
S
S
S
P
S
A
A
B
B
T
T
C
C
C/L  
OF CHIP  
BW  
BW  
C/L OF CHIP  
C
L
C
L
BL  
L
BL  
L
0508 - 2 Element  
PAD LAYOUT  
0508 - 4 Element  
PAD LAYOUT  
E
E
W
P
D
W
D
S
S
X
X
A
S
S
P
A
B
B
C
T
T
C
BW  
C/L OF CHIP  
BW  
C
L
C/L  
OF CHIP  
C
L
BL  
L
BL  
L
PART DIMENSIONS  
0405 - 2 Element  
PAD LAYOUT DIMENSIONS  
0405 - 2 Element  
L
W
1.37 ± 0.15  
T
BW  
0.36 ± 0.10  
BL  
0.20 ± 0.10  
P
S
A
0.46  
B
0.74  
C
1.20  
D
0.30  
E
0.64  
1.00 ± 0.15  
0.66 MAX  
0.64 REF  
0.32 ± 0.10  
(0.039 ± 0.006) (0.054 ± 0.006) (0.026 MAX) (0.014 ± 0.004) (0.008 ± 0.004  
)
)
)
(0.025 REF) (0.013 ± 0.004)  
(0.018)  
(0.029)  
(0.047)  
(0.012)  
(0.025)  
0508 - 2 Element  
0508 - 2 Element  
L
W
2.10 ± 0.15  
T
BW  
0.43 ± 0.10  
BL  
0.33 ± 0.08  
P
S
A
0.68  
(0.027)  
B
1.32  
(0.052)  
C
2.00  
(0.079)  
D
0.46  
(0.018)  
E
1.00  
(0.039)  
1.30 ± 0.15  
0.94 MAX  
1.00 REF  
0.50 ± 0.10  
(0.051 ± 0.006) (0.083 ± 0.006) (0.037 MAX) (0.017 ± 0.004) (0.013 ± 0.003  
(0.039 REF) (0.020 ± 0.004)  
0508 - 4 Element  
0508 - 4 Element  
L
W
2.10 ± 0.15  
T
BW  
0.25 ± 0.06  
BL  
0.20 ± 0.08  
P
X
S
A
0.56  
(0.022)  
B
1.32  
(0.052)  
C
1.88  
(0.074)  
D
0.30  
(0.012)  
E
0.50  
(0.020)  
1.30 ± 0.15  
0.94 MAX  
0.50 REF  
0.75 ± 0.10  
0.25 ± 0.10  
(0.051 ± 0.006) (0.083 ± 0.006) (0.037 MAX) (0.010 ± 0.003) (0.008 ± 0.003  
(0.020 REF) (0.030 ± 0.004) (0.010 ± 0.004)  
0612 - 4 Element  
0612 - 4 Element  
A
B
C
D
E
L
W
3.20 ± 0.20  
T
BW  
0.41 ± 0.10  
BL  
P
X
S
+0.25  
0.89  
1.65  
2.54  
0.46  
0.79  
1.60 ± 0.20  
1.35 MAX  
0.18  
0.76 REF  
1.14 ± 0.10  
0.38 ± 0.10  
-0.08  
+0.010  
(0.035)  
(0.065)  
(0.100)  
(0.018)  
(0.031)  
(0.063 ± 0.008) (0.126 ± 0.008) (0.053 MAX) (0.016 ± 0.004) (0.007  
)
(0.030 REF) (0.045 ± 0.004) (0.015 ± 0.004)  
-0.003  
43  
Low Inductance Capacitors  
Introduction  
As switching speeds increase and pulse rise times decrease  
INTERDIGITATED CAPACITORS  
the need to reduce inductance becomes a serious limitation  
for improved system performance. Even the decoupling  
capacitors, that act as a local energy source, can generate  
unacceptable voltage spikes: V = L (di/dt). Thus, in high  
speed circuits, where di/dt can be quite large, the size of the  
voltage spike can only be reduced by reducing L.  
Multiple terminations of a capacitor will also help in reducing  
the parasitic inductance of the device. The IDC is such a  
device. By terminating one capacitor with 8 connections the  
ESL can be reduced even further. The measured inductance  
of the 0612 IDC is 60 pH, while the 0508 comes in around  
50 pH. These FR4 mountable devices allow for even higher  
clock speeds in a digital decoupling scheme. Design and  
product offerings are shown on pages 48 and 49.  
Figure 1 displays the evolution of ceramic capacitor toward  
lower inductance designs over the last few years. AVX has  
been at the forefront in the design and manufacture of these  
newer more effective capacitors.  
SpinGuard  
2000  
1500  
1000  
-
+
-
+
2000  
pH  
1206 MLC  
pH  
1200  
0612 LICC  
+
-
-
+
pH  
170  
500  
0508 LICC  
130pH  
0306 LICC  
0612  
IDC  
105pH  
0508 IDC  
60 pH  
LICA  
50 pH  
25  
LOW INDUCTANCE CHIP ARRAYS (LICA®)  
pH  
Further reduction in inductance can be achieved by designing  
alternative current paths to minimize the mutual inductance  
factor of the electrodes (Figure 3). This is achieved by AVX’s  
LICA® product which was the result of a joint development  
between AVX and IBM. As shown in Figure 4, the charging  
current flowing out of the positive plate returns in the opposite  
direction along adjacent negative plates. This minimizes the  
mutual inductance.  
0
1980s  
1990s  
Figure 1. The evolution of Low Inductance Capacitors at AVX  
(values given for a 100 nF capacitor of each style)  
LOW INDUCTANCE CHIP CAPACITORS  
The total inductance of a chip capacitor is determined both  
by its length to width ratio and by the mutual inductance  
coupling between its electrodes. Thus a 1210 chip size has  
lower inductance than a 1206 chip. This design improve-  
ment is the basis of AVX’s low inductance chip capacitors, LI  
Caps, where the electrodes are terminated on the long side  
of the chip instead of the short side. The 1206 becomes an  
0612 as demonstrated in Figure 2. In the same manner, an  
0805 becomes an 0508 and 0603 becomes an 0306. This  
results in a reduction in inductance from around 1200 pH  
for conventional MLC chips to below 200 pH for Low  
Inductance Chip Capacitors. Standard designs and perfor-  
mance of these LI Caps are given on pages 46 and 47.  
The very low inductance of the LICA capacitor stems from  
the short aspect ratio of the electrodes, the arrangement of  
the tabs so as to cancel inductance, and the vertical aspect  
of the electrodes to the mounting surface.  
Net  
Inductance  
Net  
Inductance  
1206  
Figure 3. Net Inductance from design. In the  
standard Multilayer capacitor, the charge currents  
entering and leaving the capacitor create complementary  
flux fields, so the net inductance is greater. On the right,  
however, if the design permits the currents  
0612  
to be opposed, there is a net cancellation, and the  
inductance is much lower.  
Figure 2. Change in aspect ratio: 1206 vs. 0612  
44  
Low Inductance Capacitors  
Introduction  
Also the effective current path length is minimized because  
the current does not have to travel the entire length of both  
electrodes to complete the circuit. This reduces the self  
inductance of the electrodes. The self inductance is also min-  
imized by the fact that the charging current is supplied by  
both sets of terminals reducing the path length even further!  
The inductance of this arrangement is less than 30 pH,  
causing the self-resonance to be above 100 MHz for the  
same popular 100 nF capacitance. Parts available in the  
LICA design are shown on pages 50 and 51.  
Figure 5 compares the self resonant frequencies of various  
capacitor designs versus capacitance values. The approxi-  
mate inductance of each style is also shown.  
Figure 4. LICA’s Electrode/Termination Construction.  
The current path is minimized – this reduces self-inductance.  
Current flowing out of the positive plate, returns in the  
opposite direction along the adjacent negative plate –  
this reduces the mutual inductance.  
Active development continues on low inductance  
capacitors. C4 termination with low temperature solder  
is now available for plastic packages. Consult AVX  
for details.  
1000.00  
100.00  
LICA (25 pH)  
0508 IDC (50 pH)  
0612 IDC (60 pH)  
0306 LICC (110 pH)  
0508 LICC (130 pH)  
0612 LICC (170 pH)  
0603 (700 pH)  
0805 (800 pH)  
10.00  
1206 (1200 pH)  
1.00  
10.00  
100.00  
1000.00  
Capacitance, (nF)  
Figure 5. Self Resonant Frequency vs. Capacitance and Capacitor Design  
45  
Low Inductance Capacitors  
0612/0508/0306 LICC (Low Inductance Chip Capacitors)  
GENERAL DESCRIPTION  
The total inductance of a chip capacitor is determined both by its  
length to width ratio and by the mutual inductance coupling  
between its electrodes.  
Thus a 1210 chip size has a lower inductance than a 1206 chip.  
This design improvement is the basis of AVX’s Low Inductance  
Chip Capacitors (LICC), where the electrodes are terminated on the  
long side of the chip instead of the short side. The 1206 becomes  
an 0612, in the same manner, an 0805 becomes an 0508, an 0603  
becomes an 0306. This results in a reduction in inductance from  
the 1nH range found in normal chip capacitors to less than 0.2nH  
for LICCs. Their low profile is also ideal for surface mounting (both  
LICC  
MLCC  
on the PCB and on IC package) or inside cavity mounting on the  
IC itself.  
HOW TO ORDER  
0612  
Z
D
105  
M
A
T
2
A*  
Size  
0306  
0508  
0612  
Voltage  
6 = 6.3V  
Z = 10V  
Y = 16V  
3 = 25V  
5 = 50V  
Dielectric  
C = X7R  
D = X5R  
Capacitance  
Code (In pF)  
2 Sig. Digits +  
Number of Zeros  
Capacitance  
Tolerance  
K = ±10%  
Failure Rate Terminations  
Packaging  
Available  
2 = 7" Reel  
4 = 13" Reel  
Thickness  
Thickness  
mm (in)  
0.56 (0.022)  
0.61 (0.024)  
0.76 (0.030)  
1.02 (0.040)  
1.27 (0.050)  
A = N/A  
T = Plated Ni  
and Sn  
M = ±20%  
J = Tin/Lead  
TYPICAL INDUCTANCE  
PERFORMANCE CHARACTERISTICS  
Measured  
Inductance (pH)  
Capacitance Tolerances K = ±10%; M = ±20%  
Package Style  
Operation  
Temperature Range  
X7R = -55°C to +125°C;  
X5R = -55°C to +85°C  
1206 MLCC  
0 6 1 2 LICC  
0 5 0 8 LICC  
1200  
Temperature Coefficient ±15% (0VDC)  
Voltage Ratings  
6.3, 10, 16, 25 VDC  
1 7 0  
1 3 0  
1 0 5  
Dissipation Factor  
6.3V = 6.5% max; 10V = 5.0% max;  
16V = 3.5% max; 25V = 3.0% max  
Insulation Resistance  
(@+25°C, RVDC)  
100,000Mmin, or 1,000Mper  
µF min.,whichever is less  
0 3 0 6 LICC  
*Note: See Range Chart for Codes  
TYPICAL IMPEDANCE CHARACTERISTICS  
10  
1
10  
MLCC_0805  
MLCC_1206  
LICC_0612  
1
0.1  
0.1  
LICC_0508  
0.01  
0.01  
0.001  
0.001  
1
10  
Frequency (MHz)  
100  
1000  
1
10  
100  
1000  
Frequency (MHz)  
46  
Low Inductance Capacitors  
0612/0508/0306 LICC (Low Inductance Chip Capacitors)  
SIZE  
Packaging  
0306  
Embossed  
0.81 ± 0.15  
(0.032 ± 0.006)  
0508  
Embossed  
1.27 ± 0.25  
(0.050 ± 0.010)  
0612  
Embossed  
1.60 ± 0.25  
(0.063 ± 0.010)  
PHYSICAL DIMENSIONS AND  
PAD LAYOUT  
MM  
(in.)  
Length  
MM  
(in.)  
1.60 ± 0.15  
(0.063 ± 0.006)  
2.00 ± 0.25  
(0.080 ± 0.010)  
3.20 ± 0.25  
(0.126 ± 0.010)  
Width  
WVDC  
6.3 10 16 25 50 6.3 10 16 25 50 6.3 10 16 25 50  
t
W
CAP  
(uF)  
0.001  
0.0022  
0.0047  
0.010  
0.015  
0.022  
0.047  
0.068  
0.10  
0.15  
0.22  
0.47  
0.68  
1.0  
T
L
PHYSICAL CHIP DIMENSIONS  
mm (in)  
L
W
t
1.60 ± 0.25  
(0.063 ± 0.010)  
3.20 ± 0.25  
(0.126 ± 0.010)  
0.13 min.  
(0.005 min.)  
0612  
0508  
0306  
1.27 ± 0.25  
(0.050 ± 0.010)  
2.00 ± 0.25  
(0.080 ± 0.010)  
0.13 min.  
(0.005 min.)  
0.81 ± 0.15  
(0.032 ± 0.006)  
1.60 ± 0.15  
(0.063 ± 0.006)  
0.13 min.  
(0.005 min.)  
T - See Range Chart for Thickness and Codes  
1.5  
2.2  
PAD LAYOUT DIMENSIONS  
mm (in)  
3.3  
A
B
C
4.7  
0612  
0508  
0306  
0.76 (0.030)  
0.51 (0.020)  
0.31 (0.012)  
3.05 (0.120)  
2.03 (0.080)  
1.52 (0.060)  
.635 (0.025)  
0.51 (0.020)  
0.51 (0.020)  
10  
= X5R  
Solid = X7R  
mm (in.)  
mm (in.)  
mm (in.)  
0306  
0508  
0612  
Code Thickness  
Code Thickness  
Code Thickness  
A
0.61 (0.024)  
S
0.56 (0.022)  
0.76 (0.030)  
1.02 (0.040)  
S
V
W
A
0.56 (0.022)  
0.76 (0.030)  
1.02 (0.040)  
1.27 (0.050)  
V
A
“B”  
C
“A”  
C
47  
Low Inductance Capacitors  
0612/0508 IDC (InterDigitated Capacitors)  
GENERAL DESCRIPTION  
Very low equivalent series inductance (ESL), surface mountable,  
high speed decoupling capacitor in 0612 and 0508 case size.  
0612  
• Measured inductances of 60 pH (for 0612) and 50 pH (for 0508)  
are the lowest in the FR4 mountable device family. Now use 10T  
devices with inductances of 45 pH (for 0612) and 35 pH (for  
0508).  
• Opposing current flow creates opposing magnetic fields. This  
causes the fields to cancel, effectively reducing the equivalent  
series inductance.  
0508  
+
+
• Perfect solution for decoupling high speed microprocessors by  
allowing the engineers to lower the power delivery inductance of  
the entire system through the use of eight vias.  
• Overall reduction in decoupling components due to very low  
series inductance and high capacitance.  
+
+
HOW TO ORDER  
225  
M
W
3
L
1
6
D
A
T
3
A
Capacitance Capacitance  
Code (In pF) Tolerance  
Style  
Case  
Size  
Low  
Number  
of  
Terminals  
1 = 8 Terminals  
Voltage Dielectric  
4 = 4V C = X7R  
6 = 6.3V D = X5R  
Z = 10V  
Failure Termination Packaging  
Thickness  
Max. Thickness  
mm (in.)  
Inductance  
Rate  
T = Plated Ni Available  
2 Sig. Digits +  
Number of  
Zeros  
M = ±20%  
A = N/A  
2 = 0508 ESL = 50pH  
3 = 0612 ESL = 60pH  
and Sn  
1=7" Reel  
3=13" Reel A=0.95 (0.037)  
S=0.55 (0.022)  
Y = 16V  
PERFORMANCE CHARACTERISTICS  
Capacitance Tolerance  
Operation  
Temperature Range  
±20% Preferred  
X7R = -55°C to +125°C;  
X5R = -55°C to +85°C  
Dielectric Strength  
CTE (ppm/C)  
No problems observed after 2.5 x RVDC  
for 5 seconds at 50mA max current  
12.0  
Temperature Coefficient ±15% (0VDC)  
Thermal Conductivity 4-5W/M K  
Voltage Ratings  
4, 6.3, 10, 16 VDC  
Terminations  
Available  
Dissipation Factor  
4V, 6.3V = 6.5% max;  
10V = 5.0% max;  
16V = 3.5% max  
Plated Nickel and Solder  
Max. Thickness  
0.037" (0.95mm)  
Insulation Resistance  
(@+25°C, RVDC)  
100,000Mmin, or 1,000Mper  
µF min.,whichever is less  
TYPICAL ESL AND IMPEDANCE  
10  
Measured  
Package Style  
Inductance (pH)  
MLCC_1206  
LICC_0612  
1
1206 MLCC  
0612 LICC  
0 6 1 2 IDC  
0 5 0 8 IDC  
1200  
170  
6 0  
0.1  
IDC_0612  
0.01  
0.001  
1
10  
100  
1000  
5 0  
Frequency (MHz)  
48  
Low Inductance Capacitors  
0612/0508 IDC (InterDigitated Capacitors)  
SIZE  
Thin 0508  
0508  
Thin 0612  
0612  
MM  
(in.)  
2.03 ± 0.20  
2.03 ± 0.20  
3.20 ± 0.20  
3.20 ± 0.20  
Length  
(0.080 ± 0.008)  
(0.080 ± 0.008)  
(0.126 ± 0.008)  
(0.126 ± 0.008)  
MM  
(in.)  
1.27 ± 0.20  
(0.050 ± 0.008)  
1.27 ± 0.20  
(0.050 ± 0.008)  
1.60 ± 0.20  
(0.063 ± 0.008)  
1.60 ± 0.20  
(0.063 ± 0.008)  
Width  
Terminal  
Pitch  
MM  
(in.)  
0.508 REF  
0.020 REF  
0.508 REF  
0.020 REF  
0.76 REF  
0.030 REF  
0.76 REF  
0.030 REF  
MM  
(in.)  
0.55 MAX.  
(0.022) MAX.  
0.95 MAX.  
(0.037) MAX.  
0.55 MAX.  
(0.022) MAX.  
0.95 MAX.  
(0.037) MAX.  
Thickness  
Inductance (pH)  
WVDC  
95  
95  
120  
120  
4
6.3  
10  
16  
4
6.3  
10  
16  
4
6.3  
10  
16  
4
6.3  
10  
16  
CAP (uF)  
and Thickness  
0.047  
0.068  
0.10  
0.22  
0.33  
0.47  
0.68  
1.0  
Consult factory for additional requirements  
1.5  
= X7R  
= X5R  
2.2  
3.3  
PHYSICAL DIMENSIONS AND PAD LAYOUT  
L
X
X
S
S
P
T
E
D
BW  
C/L OF CHIP  
C
L
A
B
C
BL  
W
PAD LAYOUT  
DIMENSIONS  
PHYSICAL CHIP DIMENSIONS millimeters (inches)  
0612  
0612  
L
W
BW  
BL  
P
X
S
A
B
C
D
E
+0.25  
3.20 ± 0.20  
1.60 ± 0.20  
0.41 ± 0.10  
0.18  
0.76 REF  
1.14 ± 0.10  
0.38 ± 0.10  
0.89  
1.65  
2.54  
0.46  
0.76  
-0.08  
+0.010  
-0.003  
(0.126 ± 0.008) (0.063 ± 0.008) (0.016 ± 0.004) (0.007  
)
)
(0.030 REF) (0.045 ± 0.004) (0.015 ± 0.004)  
(0.035) (0.065) (0.100) (0.018) (0.030)  
0508  
0508  
L
W
BW  
BL  
P
X
S
A
B
C
D
E
+0.25  
-0.08  
2.03±0.20  
1.27±0.20  
0.254±0.10  
0.18  
0.508 REF  
0.76±0.10  
0.254±0.10  
0.64  
1.27  
1.91  
0.28  
0.51  
(0.080±0.008) (0.050±0.008) (0.010±0.004) (0.007 +0.010  
(0.020 REF) (0.030±0.004) (0.010±.0.004)  
(0.025) (0.050) (0.075) (0.011) (0.020)  
-0.003  
49  
Low Inductance Capacitors  
LICA® (Low Inductance Decoupling Capacitor Arrays)  
LICA® arrays utilize up to four separate capacitor sections in one  
ceramic body (see Configurations and Capacitance Options). These  
designs exhibit a number of technical advancements:  
Low Inductance features–  
Low resistance platinum electrodes in a low aspect ratio pattern  
Double electrode pickup and perpendicular current paths  
C4 flip-chip” technology for minimal interconnect inductance  
HOW TO ORDER  
4
A
A
LICA  
3
T
102  
M
3
F
C
# of  
Caps/Part  
1 = one  
2 = two B = Established B = No Bar  
4 = four  
Inspection  
Code  
A = Standard  
Code  
Face  
A = Bar  
Style Voltage Dielectric  
Cap/Section Capacitance Height  
(EIA Code) Tolerance Code  
10V = Z T = T55T 102 = 1000 pF M = ±20% 6 = 0.500mm  
Termination  
F = C4 Solder  
Reel Packaging  
M = 7" Reel  
&
5V = 9 D = X5R  
Size  
Balls- 97Pb/3Sn R = 13" Reel  
P = GMV 3 = 0.650mm H = C4 Solder Balls 6 = 2"x2" Waffle Pack  
25V = 3 S = High K 103 = 10 nF  
T55T 104 = 100 nF  
Reliability  
Testing  
C = Dot, S55S  
Dielectrics  
1 = 0.875mm  
Low ESR  
8 = 2"x2" Black Waffle  
5 = 1.100mm P = Cr-Cu-Au  
7 = 1.600mm N = Cr-Ni-Au  
X = None  
Pack  
7 = 2"x2" Waffle Pack  
w/ termination  
facing up  
TABLE 1  
A = 2"x2" Black Waffle  
Pack  
w/ termination  
facing up  
C = 4"x4" Waffle Pack  
w/ clear lid  
Typical Parameters  
Capacitance, 25°C  
Capacitance, 55°C  
Capacitance, 85°C  
Dissipation Factor 25°  
DC Resistance  
T55T  
Co  
1.4 x Co  
Co  
12  
0.2  
Units  
Nanofarads  
Nanofarads  
Nanofarads  
Percent  
Ohms  
IR (Minimum @25°)  
2.0  
500  
8.5  
15 to 120  
Megaohms  
Volts  
ppm/°C 25-100°  
Pico-Henries  
Dielectric Breakdown, Min  
Thermal Coefficient of Expansion  
Inductance: (Design Dependent)  
Frequency of Operation  
Ambient Temp Range  
DC to 5 Gigahertz  
-55° to 125°C  
TERMINATION OPTIONS  
C4 AND PAD DIMENSIONS  
C4 SOLDER (97% Pb/3% Sn) BALLS  
0.8 .03 (2 pics)  
0.6 .100mm  
“Centrality”*  
}
0.925 0.03mm  
L = .06mm  
0.925 0.03mm  
Vertical and  
Horizontal  
Pitch=0.4 .02mm  
Code Face  
to Denote  
Orientation  
(Optional)  
C4 Ball diameter:  
.164 .03mm  
*NOTE: The C4 pattern  
will be within  
0.1mm of the  
center of the  
LICA body, in  
both axes.  
TERMINATION OPTION P OR N  
"H " = (H +.096 .02mm typ)  
t
b
"H  
b
" .06  
"W" = .06mm  
Pin A1 is the lower left hand ball.  
Code  
(Body Height)  
Width  
(W)  
Length  
(L)  
Height  
Body (Hb)  
1
3
5
6
7
1.600mm  
1.600mm  
1.600mm  
1.600mm  
1.600mm  
1.850mm  
1.850mm  
1.850mm  
1.850mm  
1.850mm  
0.875mm  
0.650mm  
1.100mm  
0.500mm  
1.600mm  
50  
Low Inductance Capacitors  
LICA® (Low Inductance Decoupling Capacitor Arrays)  
LICA® TYPICAL PERFORMANCE CURVES  
10  
160  
LICA  
Impedance  
0V  
5V  
10V  
25V  
140  
120  
100  
80  
1.0  
Resistance  
60  
.1  
40  
20  
0
-60 -40  
-20  
0
20  
40  
140  
60  
80  
100  
120  
.01  
Temperature, °C  
1
10  
100  
Frequency, MHz  
Effect of Bias Voltage and  
Temperature on a 130 nF LICA® (T55T)  
Impedance vs. Frequency  
LICA VALID PART NUMBER LIST  
CONFIGURATION  
Schematic  
Code Face  
Capacitors per  
Package  
Part Number  
Voltage Thickness (mm)  
D
B
LICA3T193M3FC4AA  
LICA3T153P3FC4AA  
LICA3T134M1FC1AA  
LICA3T104P1FC1AA  
LICA3T333M1FC4AA  
LICA3T263P3FC4AA  
LICA3T244M5FC1AA  
LICA3T194P5FC1AA  
LICA3T394M7FC1AB  
LICA3T314P7FC1AB  
Extended Range  
25  
25  
25  
25  
25  
25  
25  
25  
25  
25  
0.650  
0.650  
0.875  
0.875  
0.875  
0.650  
1.100  
1.100  
1.600  
1.600  
4
4
1
1
4
4
1
1
1
1
D
C
B
A
CAP  
C
A
Schematic  
Code Face  
B1  
B2  
CAP 2  
A2  
D1  
D2  
D1 C1  
D2 C2  
B1  
B2  
A1  
A2  
CAP 1  
A1  
C1  
C2  
LICAZT623M3FC4AB  
LICA3T104M3FC1A  
LICA3T803P3FC1A  
LICA3T503M3FC2A  
LICA3T403P3FC2A  
LICA3S253M3FC4A  
10  
25  
25  
25  
25  
25  
0.650  
0.650  
0.650  
0.650  
0.650  
0.650  
4
1
1
2
2
4
Schematic  
Code Face  
B1  
B2  
D1  
D2  
D1 C1  
D2 C2  
D3 C3  
D4 C4  
B1  
B2  
B3  
B4  
A1  
A2  
A3  
A4  
CAP 1  
CAP 2  
A1  
B3  
A2  
B4  
C1  
D3  
C2  
D4  
CAP 3  
A3  
CAP 4  
A4  
C3  
C4  
WAFFLE PACK OPTIONS FOR LICA®  
LICA® PACKAGING SCHEME “M” AND “R”  
8mm conductive plastic tape on reel:  
“M”=7" reel max. qty. 3,000, “R”=13" reel max. qty. 8,000  
FLUOROWARE®  
Code Face  
to Denote  
Orientation  
Code Face  
to Denote  
Orientation  
®
Wells for LICA part, C4 side down  
76 pieces/foot  
1.75mm x 2.01mm x 1.27mm deep  
on 4mm centers  
0.64mm Push Holes  
H20-080  
Option "6"  
Option "C"  
100 pcs.  
per 2" x 2"  
package  
Code Face  
to Denote  
Orientation  
(Typical)  
400 pcs. per  
1.75mm  
4" x 4" package  
Note: Standard configuration is  
Termination side down  
Sprocket Holes: 1.55mm, 4mm pitch  
51  
High Voltage MLC Chips  
For 600V to 5000V Application  
High value, low leakage and small size are difficult parameters to obtain  
in capacitors for high voltage systems. AVX special high voltage MLC  
chips capacitors meet these performance characteristics and are  
designed for applications such as snubbers in high frequency power  
converters, resonators in SMPS, and high voltage coupling/DC blocking.  
These high voltage chip designs exhibit low ESRs at high frequencies.  
Larger physical sizes than normally encountered chips are used to make  
high voltage chips. These larger sizes require that special precautions be  
taken in applying these chips in surface mount assemblies. This is due  
to differences in the coefficient of thermal expansion (CTE) between the  
substrate materials and chip capacitors. Apply heat at less than 4°C per  
second during the preheat. The preheat temperature must be within  
50°C of the peak temperature reached by the ceramic bodies through  
the soldering process. Chips 1808 and larger to use reflow soldering  
only.  
Capacitors with X7R Dielectrics are not intended for AC line filtering  
applications. Contact plant for recommendations.  
Capacitors may require protective surface coating to prevent external  
arcing.  
HOW TO ORDER  
1808  
A
A
271  
K
A
1
1
A
AVX  
Style  
Voltage Temperature Capacitance Code  
Capacitance  
Tolerance  
C0G: J = ±5% A = Standard T = NiGuard  
K = ±10%  
M = ±20%  
X7R: K = ±10%  
M = ±20%  
Test  
Level  
Termination*  
1 = Pd/Ag  
Packaging  
1 = 7" Reel  
3 = 13" Reel  
9 = Bulk  
Special  
Code  
A = Standard  
600V = C Coefficient  
(2 significant digits  
+ no. of zeros)  
Examples:  
1206 1000V = A  
1210 1500V = S  
1808 2000V = G  
1812 2500V = W  
1825 3000V = H  
2220 4000V = J  
C0G = A  
X7R = C  
Nickel  
10 pF = 100  
Barrier  
Solderable  
Plate  
100 pF = 101  
1,000 pF = 102  
22,000 pF = 223  
220,000 pF = 224  
1 µF =105  
Z = +80%, -20%  
2225  
3640  
5000V = K  
W
L
T
t
DIMENSIONS  
millimeters (inches)  
SIZE  
1206  
1210  
1808*  
1812*  
4.50 ± 0.3  
1825*  
2220*  
2225*  
3640*  
(L) Length  
3.20 ± 0.2  
3.20 ± 0.2  
4.57 ± 0.25  
4.50 ± 0.3  
5.7 ± 0.4  
5.72 ± 0.25  
9.14 ± 0.25  
(0.126 ± 0.008) (0.126 ± 0.008) (0.180 ± 0.010) (0.177 ± 0.012) (0.177 ± 0.012) (0.224 ± 0.016) (0.225 ± 0.010) (0.360 ± 0.010)  
1.60 ± 0.2 2.50 ± 0.2 2.03 ± 0.25 3.20 ± 0.2 6.40 ± 0.3 5.0 ± 0.4 6.35 ± 0.25 10.2 ± 0.25  
(0.063 ± 0.008) (0.098 ± 0.008) (0.080 ± 0.010) (0.126 ± 0.008) (0.252 ± 0.012) (0.197 ± 0.016) (0.250 ± 0.010) (0.400 ± 0.010)  
(W) Width  
(T) Thickness  
Max.  
1.52  
(0.060)  
1.70  
(0.067)  
2.03  
(0.080)  
2.54  
(0.100)  
2.54  
(0.100)  
3.3  
(0.130)  
2.54  
(0.100)  
2.54  
(0.100)  
(t) terminal  
min.  
max.  
0.25 (0.010)  
0.75 (0.030)  
0.25 (0.010)  
0.75 (0.030)  
0.25 (0.010)  
1.02 (0.040)  
0.25 (0.010)  
1.02 (0.040)  
0.25 (0.010)  
1.02 (0.040)  
0.25 (0.010)  
1.02 (0.040)  
0.25 (0.010)  
1.02 (0.040)  
0.76 (0.030)  
1.52 (0.060)  
*Reflow Soldering Only  
52  
High Voltage MLC Chips  
For 600V to 5000V Applications  
C0G Dielectric  
Performance Characteristics  
Capacitance Range  
10 pF to 0.047 µF  
(25°C, 1.0 ±0.2 Vrms at 1kHz, for 1000 pF use 1 MHz)  
Capacitance Tolerances  
±5%, ±10%, ±20%  
Dissipation Factor  
0.1% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz, for 1000 pF use 1 MHz)  
-55°C to +125°C  
Operating Temperature Range  
Temperature Characteristic  
Voltage Ratings  
0 ±30 ppm/°C (0 VDC)  
600, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)  
100K Mmin. or 1000 M- µF min., whichever is less  
10K Mmin. or 100 M- µF min., whichever is less  
120% rated voltage for 5 seconds at 50 mA max. current  
Insulation Resistance (+25°C, at 500 VDC)  
Insulation Resistance (+125°C, at 500 VDC)  
Dielectric Strength  
HIGH VOLTAGE C0G CAPACITANCE VALUES  
VOLTAGE  
1206  
10 pF  
1210  
1808  
1812  
1825  
2220  
2225  
3640  
min.  
100 pF  
1500 pF  
10 pF  
820 pF  
10 pF  
330 pF  
10 pF  
150 pF  
100 pF  
2700 pF  
100 pF  
1500 pF  
10 pF  
470 pF  
10 pF  
270 pF  
10 pF  
150 pF  
10 pF  
100 pF  
10 pF  
39 pF  
100 pF  
5600 pF  
100 pF  
2700 pF  
10 pF  
1000 pF  
0.012 µF  
100 pF  
6800 pF  
100 pF  
2700 pF  
100 pF  
1800 pF  
10 pF  
1000 pF  
0.012 µF  
1000 pF  
0.010 µF  
100 pF  
2700 pF  
100 pF  
2200 pF  
100 pF  
1000 pF  
10 pF  
1000 pF  
0.015 µF  
1000 pF  
0.010 µF  
100 pF  
3300 pF  
100 pF  
2200 pF  
100 pF  
1200 pF  
10 pF  
1000 pF  
0.047 µF  
1000 pF  
0.018 µF  
100 pF  
600  
max.  
680 pF  
10 pF  
470 pF  
10 pF  
150 pF  
10 pF  
68 pF  
min.  
1000  
max.  
min.  
1500  
max.  
1000 pF  
10 pF  
8200 pF  
100 pF  
min.  
2000  
max.  
680 pF  
10 pF  
5600 pF  
100 pF  
min.  
2500  
max.  
390 pF  
10 pF  
1000 pF  
10 pF  
3900 pF  
100 pF  
min.  
3000  
max.  
330 pF  
10 pF  
680 pF  
10 pF  
680 pF  
10 pF  
820 pF  
10 pF  
2200 pF  
100 pF  
min.  
4000  
max.  
100 pF  
220 pF  
220 pF  
330 pF  
1000 pF  
10 pF  
min.  
5000  
max.  
680 pF  
X7R Dielectric  
Performance Characteristics  
Capacitance Range  
10 pF to 0.56 µF (25°C, 1.0 ±0.2 Vrms at 1kHz)  
±10%; ±20%; +80%, -20%  
2.5% max. (+25°C, 1.0 ±0.2 Vrms, 1kHz)  
-55°C to +125°C  
Capacitance Tolerances  
Dissipation Factor  
Operating Temperature Range  
Temperature Characteristic  
Voltage Ratings  
±15% (0 VDC)  
600, 1000, 1500, 2000, 2500, 3000, 4000 & 5000 VDC (+125°C)  
100K Mmin. or 1000 M- µF min., whichever is less  
10K Mmin. or 100 M- µF min., whichever is less  
120% rated voltage for 5 seconds at 50 mA max. current  
Insulation Resistance (+25°C, at 500 VDC)  
Insulation Resistance (+125°C, at 500 VDC)  
Dielectric Strength  
HIGH VOLTAGE X7R MAXIMUM CAPACITANCE VALUES  
VOLTAGE  
1206  
1210  
1808  
1812  
1825  
2220  
2225  
3640  
min.  
1000 pF  
0.015 µF  
100 pF  
5600 pF  
100 pF  
1800 pF  
10 pF  
1000pF  
1000 pF  
0.033 µF  
1000 pF  
0.015 µF  
100 pF  
3900 pF  
100 pF  
2200 pF  
1000 pF  
0.056 µF  
1000 pF  
0.018 µF  
100 pF  
6800 pF  
100 pF  
2700 pF  
10 pF  
1000 pF  
0.10 µF  
1000 pF  
0.027 µF  
100 pF  
0.012 µF  
100 pF  
4700 pF  
10 pF  
0.01 µF  
0.18 µF  
1000 pF  
0.10 µF  
1000 pF  
0.033 µF  
100 pF  
0.01 µF  
100 pF  
6800 pF  
100 pF  
4700 pF  
0.01 µF  
0.22 µF  
1000 pF  
0.10 µF  
1000 pF  
0.039 µF  
1000 pF  
0.01 µF  
100 pF  
8200 pF  
100 pF  
4700 pF  
0.01 µF  
0.22 µF  
1000 pF  
0.10 µF  
1000 pF  
0.047 µF  
1000 pF  
0.015 µF  
100 pF  
0.01 µF  
100 pF  
6800 pF  
0.01 µF  
0.56 µF  
0.01 µF  
0.22 µF  
1000 pF  
0.068 µF  
1000 pF  
0.027 µF  
1000 pF  
0.022 µF  
1000 pF  
0.018 µF  
100 pF  
600  
max.  
min.  
1000  
max.  
min.  
1500  
max.  
min.  
2000  
max.  
min.  
2500  
max.  
1800 pF  
10 pF  
3300 pF  
10 pF  
min.  
3000  
max.  
1500 pF  
2200 pF  
min.  
4000  
max.  
6800 pF  
100 pF  
min.  
5000  
max.  
3300 pF  
53  
MIL-PRF-55681/Chips  
Part Number Example  
CDR01 thru CDR06  
MILITARY DESIGNATION PER MIL-PRF-55681  
Part Number Example  
CDR01 BP 101  
B
K
S
M
L
W
D
t
MIL Style  
Voltage-temperature  
Limits  
Capacitance  
T
Rated Voltage  
Capacitance Tolerance  
Termination Finish  
Failure Rate  
MIL Style: CDR01, CDR02, CDR03, CDR04, CDR05,  
CDR06  
Termination Finish:  
M = Palladium Silver  
N = Silver Nickel Gold  
S = Solder-coated  
U = Base Metallization/Barrier  
Metal/Solder Coated*  
W = Base Metallization/Barrier  
Metal/Tinned (Tin or Tin/  
Lead Alloy)  
Voltage Temperature Limits:  
BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with  
rated voltage from -55°C to +125°C  
BX = ±15% without voltage; +15 –25% with rated voltage  
from -55°C to +125°C  
*Solder shall have a melting point of 200°C or less.  
Failure Rate Level: M = 1.0%, P = .1%, R = .01%,  
Capacitance: Two digit figures followed by multiplier  
(number of zeros to be added) e.g., 101 = 100 pF  
S = .001%  
Packaging: Bulk is standard packaging. Tape and reel  
per RS481 is available upon request.  
Rated Voltage: A = 50V, B = 100V  
Capacitance Tolerance: J ± 5%, K ± 10%, M ± 20%  
CROSS REFERENCE: AVX/MIL-PRF-55681/CDR01 THRU CDR06*  
Thickness (T)  
D
Termination Band (t)  
Per  
AVX  
Length (L)  
Width (W)  
MIL-PRF-55681 Style  
Max.  
Min.  
.020  
.020  
.020  
.020  
Max.  
Min.  
.030  
Max.  
Min.  
.010  
.010  
.010  
.010  
CDR01  
CDR02  
CDR03  
CDR04  
0805 .080 ± .015 .050 ± .015 .055  
1805 .180 ± .015 .050 ± .015 .055  
1808 .180 ± .015 .080 ± .018 .080  
1812 .180 ± .015 .125 ± .015 .080  
.030  
.030  
.030  
+.020  
-.015  
+.020  
-.015  
CDR05  
1825 .180  
.250  
.080  
.020  
.020  
.030  
.030  
.010  
.010  
CDR06  
2225 .225 ± .020 .250 ± .020 .080  
*For CDR11, 12, 13, and 14 see AVX Microwave Chip Capacitor Catalog  
54  
MIL-PRF-55681/Chips  
Military Part Number Identification  
CDR01 thru CDR06  
CDR01 thru CDR06 to MIL-PRF-55681  
Military  
Type  
Rated temperature WVDC  
Military  
Type  
Rated temperature WVDC  
and voltage-  
Capacitance Capacitance  
and voltage-  
Capacitance Capacitance  
Designation  
in pF  
tolerance  
temperature limits  
Designation  
in pF  
tolerance  
temperature limits  
AVX Style 0805/CDR01  
AVX Style 1808/CDR03  
CDR01BP100B---  
CDR01BP120B---  
CDR01BP150B---  
CDR01BP180B---  
CDR01BP220B---  
10  
12  
15  
18  
22  
J,K  
J
J,K  
J
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR03BP331B---  
CDR03BP391B---  
CDR03BP471B---  
CDR03BP561B---  
CDR03BP681B---  
330  
390  
470  
560  
680  
J,K  
J
J,K  
J
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
J,K  
J,K  
CDR01BP270B---  
CDR01BP330B---  
CDR01BP390B---  
CDR01BP470B---  
CDR01BP560B---  
27  
33  
39  
47  
56  
J
J,K  
J
J,K  
J
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR03BP821B--  
CDR03BP102B---  
CDR03BX123B--  
CDR03BX153B---  
CDR03BX183B---  
820  
1000  
12,000  
15,000  
18,000  
J
J,K  
K
K,M  
K
BP  
BP  
BX  
BX  
BX  
100  
100  
100  
100  
100  
CDR01BP680B---  
CDR01BP820B---  
CDR01BP101B---  
CDR01B--121B---  
CDR01B--151B---  
68  
82  
100  
120  
150  
J,K  
J
J,K  
J,K  
J,K  
BP  
BP  
BP  
BP,BX  
BP,BX  
100  
100  
100  
100  
100  
CDR03BX223B---  
CDR03BX273B---  
CDR03BX333B---  
CDR03BX393A---  
CDR03BX473A---  
22,000  
27,000  
33,000  
39,000  
47,000  
K,M  
K
K,M  
K
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
50  
K,M  
50  
CDR01B--181B---  
CDR01BX221B---  
CDR01BX271B---  
CDR01BX331B---  
CDR01BX391B---  
180  
220  
270  
330  
390  
J,K  
K,M  
K
K,M  
K
BP,BX  
BX  
BX  
BX  
BX  
100  
100  
100  
100  
100  
CDR03BX563A---  
CDR03BX683A---  
56,000  
68,000  
K
K,M  
BX  
BX  
50  
50  
AVX Style 1812/CDR04  
CDR04BP122B---  
CDR04BP152B---  
CDR04BP182B---  
CDR04BP222B---  
CDR04BP272B---  
1200  
1500  
1800  
2200  
2700  
J
J,K  
J
J,K  
J
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR01BX471B---  
CDR01BX561B---  
CDR01BX681B---  
CDR01BX821B---  
CDR01BX102B---  
470  
560  
680  
820  
1000  
K,M  
K
K,M  
K
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
100  
100  
K,M  
CDR04BP332B---  
CDR04BX393B---  
CDR04BX473B---  
CDR04BX563B---  
CDR04BX823A---  
3300  
J,K  
K
K,M  
K
BP  
100  
100  
100  
100  
50  
CDR01BX122B---  
CDR01BX152B---  
CDR01BX182B---  
CDR01BX222B---  
CDR01BX272B---  
1200  
1500  
1800  
2200  
2700  
K
K,M  
K
K,M  
K
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
100  
100  
39,000  
47,000  
56,000  
82,000  
BX  
BX  
BX  
BX  
K
CDR04BX104A---  
CDR04BX124A---  
CDR04BX154A---  
CDR04BX184A---  
100,000  
120,000  
150,000  
180,000  
K,M  
K
K,M  
K
BX  
BX  
BX  
BX  
50  
50  
50  
50  
CDR01BX332B---  
CDR01BX392A---  
CDR01BX472A---  
3300  
3900  
4700  
K,M  
K
K,M  
BX  
BX  
BX  
100  
50  
50  
AVX Style 1805/CDR02  
AVX Style 1825/CDR05  
CDR02BP221B---  
CDR02BP271B---  
CDR02BX392B---  
CDR02BX472B---  
CDR02BX562B---  
220  
270  
3900  
4700  
5600  
J,K  
J
K
K,M  
K
BP  
BP  
BX  
BX  
BX  
100  
100  
100  
100  
100  
CDR05BP392B---  
CDR05BP472B---  
CDR05BP562B---  
CDR05BX683B---  
CDR05BX823B---  
3900  
4700  
5600  
68,000  
82,000  
J,K  
J,K  
J,K  
K,M  
K
BP  
BP  
BP  
BX  
BX  
100  
100  
100  
100  
100  
CDR02BX682B---  
CDR02BX822B---  
CDR02BX103B---  
CDR02BX123A---  
CDR02BX153A---  
6800  
8200  
10,000  
12,000  
15,000  
K,M  
K
K,M  
K
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
50  
CDR05BX104B---  
CDR05BX124B---  
CDR05BX154B---  
CDR05BX224A---  
CDR05BX274A---  
100,000  
120,000  
150,000  
220,000  
270,000  
K,M  
K
K,M  
K,M  
K
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
50  
K,M  
50  
50  
CDR02BX183A---  
CDR02BX223A---  
18,000  
22,000  
K
K,M  
BX  
BX  
50  
50  
CDR05BX334A---  
330,000  
K,M  
BX  
50  
Add appropriate failure rate  
Add appropriate termination finish  
Capacitance Tolerance  
AVX Style 2225/CDR06  
CDR06BP682B---  
CDR06BP822B---  
CDR06BP103B---  
CDR06BX394A---  
CDR06BX474A---  
6800  
8200  
10,000  
390,000  
470,000  
J,K  
J,K  
J,K  
K
BP  
BP  
BP  
BX  
BX  
100  
100  
100  
50  
K,M  
50  
Add appropriate failure rate  
Add appropriate termination finish  
Capacitance Tolerance  
55  
MIL-PRF-55681/Chips  
Part Number Example  
CDR31 thru CDR35  
MILITARY DESIGNATION PER MIL-PRF-55681  
Part Number Example  
(example) CDR31 BP 101  
B
K
S
M
L
W
D
t
MIL Style  
Voltage-temperature  
Limits  
Capacitance  
T
Rated Voltage  
Capacitance Tolerance  
Termination Finish  
Failure Rate  
MIL Style: CDR31, CDR32, CDR33, CDR34, CDR35  
Termination Finish:  
M = Palladium Silver  
N = Silver Nickel Gold  
S = Solder-coated  
U = Base Metallization/Barrier  
Metal/Solder Coated*  
W = Base Metallization/Barrier  
Metal/Tinned (Tin or Tin/  
Lead Alloy)  
Voltage Temperature Limits:  
BP = 0 ± 30 ppm/°C without voltage; 0 ± 30 ppm/°C with  
rated voltage from -55°C to +125°C  
BX = ±15% without voltage; +15 –25% with rated voltage  
from -55°C to +125°C  
*Solder shall have a melting point of 200°C or less.  
Capacitance: Two digit figures followed by multiplier  
(number of zeros to be added) e.g., 101 = 100 pF  
Failure Rate Level: M = 1.0%, P = .1%, R = .01%,  
S = .001%  
Rated Voltage: A = 50V, B = 100V  
Packaging: Bulk is standard packaging. Tape and reel  
per RS481 is available upon request.  
Capacitance Tolerance: C ± .25 pF, D ± .5 pF, F ± 1%  
J ± 5%, K ± 10%, M ± 20%  
CROSS REFERENCE: AVX/MIL-PRF-55681/CDR31 THRU CDR35  
Thickness (T)  
D
Termination Band (t)  
Per MIL-PRF-55681  
(Metric Sizes)  
AVX  
Style  
Length (L) Width (W)  
(mm)  
(mm)  
Max. (mm)  
Min. (mm) Max. (mm) Min. (mm)  
CDR31  
CDR32  
CDR33  
CDR34  
CDR35  
0805  
1206  
1210  
1812  
1825  
2.00  
3.20  
3.20  
4.50  
4.50  
1.25  
1.60  
2.50  
3.20  
6.40  
1.3  
1.3  
1.5  
1.5  
1.5  
.50  
.70  
.70  
.70  
.70  
.70  
.30  
.30  
.30  
.30  
.30  
56  
MIL-PRF-55681/Chips  
Military Part Number Identification CDR31  
CDR31 to MIL-PRF-55681/7  
Military  
Type  
Designation 1 /  
Rated temperature WVDC  
and voltage-  
temperature limits  
Military  
Type  
Designation 1 /  
Rated temperature WVDC  
and voltage-  
temperature limits  
Capacitance Capacitance  
in pF tolerance  
Capacitance Capacitance  
in pF tolerance  
AVX Style 0805/CDR31 (BP)  
AVX Style 0805/CDR31 (BP) contd  
CDR31BP1R0B---  
CDR31BP1R1B---  
CDR31BP1R2B---  
CDR31BP1R3B---  
CDR31BP1R5B---  
1.0  
1.1  
1.2  
1.3  
1.5  
B,C  
B,C  
B,C  
B,C  
B,C  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BP101B---  
CDR31BP111B---  
CDR31BP121B---  
CDR31BP131B---  
CDR31BP151B---  
100  
110  
120  
130  
150  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BP1R6B---  
CDR31BP1R8B---  
CDR31BP2R0B---  
CDR31BP2R2B---  
CDR31BP2R4B---  
1.6  
1.8  
2.0  
2.2  
2.4  
B,C  
B,C  
B,C  
B,C  
B,C  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BP161B---  
CDR31BP181B---  
CDR31BP201B---  
CDR31BP221B---  
CDR31BP241B---  
160  
180  
200  
220  
240  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BP2R7B---  
CDR31BP3R0B---  
CDR31BP3R3B---  
CDR31BP3R6B---  
CDR31BP3R9B---  
2.7  
3.0  
3.3  
3.6  
3.9  
B,C,D  
B,C,D  
B,C,D  
B,C,D  
B,C,D  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BP271B---  
CDR31BP301B---  
CDR31BP331B---  
CDR31BP361B---  
CDR31BP391B---  
270  
300  
330  
360  
390  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BP4R3B---  
CDR31BP4R7B---  
CDR31BP5R1B---  
CDR31BP5R6B---  
CDR31BP6R2B---  
4.3  
4.7  
5.1  
5.6  
6.2  
B,C,D  
B,C,D  
B,C,D  
B,C,D  
B,C,D  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BP431B---  
CDR31BP471B---  
CDR31BP511A---  
CDR31BP561A---  
CDR31BP621A---  
430  
470  
510  
560  
620  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
50  
50  
50  
CDR31BP6R8B---  
CDR31BP7R5B---  
CDR31BP8R2B---  
CDR31BP9R1B---  
CDR31BP100B---  
6.8  
7.5  
8.2  
9.1  
10  
B,C,D  
B,C,D  
B,C,D  
B,C,D  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BP681A---  
680  
F,J,K  
BP  
50  
AVX Style 0805/CDR31 (BX)  
CDR31BX471B---  
CDR31BX561B---  
CDR31BX681B---  
CDR31BX821B---  
CDR31BX102B---  
470  
560  
680  
820  
1,000  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
100  
100  
CDR31BP110B---  
CDR31BP120B---  
CDR31BP130B---  
CDR31BP150B---  
CDR31BP160B---  
11  
12  
13  
15  
16  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BX122B---  
CDR31BX152B---  
CDR31BX182B---  
CDR31BX222B---  
CDR31BX272B---  
1,200  
1,500  
1,800  
2,200  
2,700  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
100  
100  
CDR31BP180B---  
CDR31BP200B---  
CDR31BP220B---  
CDR31BP240B---  
CDR31BP270B---  
18  
20  
22  
24  
27  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BX332B---  
CDR31BX392B---  
CDR31BX472B---  
CDR31BX562A---  
CDR31BX682A---  
3,300  
3,900  
4,700  
5,600  
6,800  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
50  
CDR31BP300B---  
CDR31BP330B---  
CDR31BP360B---  
CDR31BP390B---  
CDR31BP430B---  
30  
33  
36  
39  
43  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
50  
CDR31BX822A---  
CDR31BX103A---  
CDR31BX123A---  
CDR31BX153A---  
CDR31BX183A---  
8,200  
10,000  
12,000  
15,000  
18,000  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
50  
50  
50  
50  
50  
CDR31BP470B---  
CDR31BP510B---  
CDR31BP560B---  
CDR31BP620B---  
CDR31BP680B---  
47  
51  
56  
62  
68  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR31BP750B---  
CDR31BP820B---  
CDR31BP910B---  
75  
82  
91  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
100  
100  
100  
Add appropriate failure rate  
Add appropriate termination finish  
Capacitance Tolerance  
Add appropriate failure rate  
Add appropriate termination finish  
Capacitance Tolerance  
1 / The complete part number will include additional symbols to indicate capacitance  
tolerance, termination and failure rate level.  
57  
MIL-PRF-55681/Chips  
Military Part Number Identification CDR32  
CDR32 to MIL-PRF-55681/8  
Military  
Type  
Designation 1 /  
Rated temperature WVDC  
and voltage-  
temperature limits  
Military  
Type  
Designation 1 /  
Rated temperature WVDC  
and voltage-  
temperature limits  
Capacitance Capacitance  
in pF tolerance  
Capacitance Capacitance  
in pF tolerance  
AVX Style 1206/CDR32 (BP)  
AVX Style 1206/CDR32 (BP) contd  
CDR32BP1R0B---  
CDR32BP1R1B---  
CDR32BP1R2B---  
CDR32BP1R3B---  
CDR32BP1R5B---  
1.0  
1.1  
1.2  
1.3  
1.5  
B,C  
B,C  
B,C  
B,C  
B,C  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP101B---  
CDR32BP111B---  
CDR32BP121B---  
CDR32BP131B---  
CDR32BP151B---  
100  
110  
120  
130  
150  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP1R6B---  
CDR32BP1R8B---  
CDR32BP2R0B---  
CDR32BP2R2B---  
CDR32BP2R4B---  
1.6  
1.8  
2.0  
2.2  
2.4  
B,C  
B,C  
B,C  
B,C  
B,C  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP161B---  
CDR32BP181B---  
CDR32BP201B---  
CDR32BP221B---  
CDR32BP241B---  
160  
180  
200  
220  
240  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP2R7B---  
CDR32BP3R0B---  
CDR32BP3R3B---  
CDR32BP3R6B---  
CDR32BP3R9B---  
2.7  
3.0  
3.3  
3.6  
3.9  
B,C,D  
B,C,D  
B,C,D  
B,C,D  
B,C,D  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP271B---  
CDR32BP301B---  
CDR32BP331B---  
CDR32BP361B---  
CDR32BP391B---  
270  
300  
330  
360  
390  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP4R3B---  
CDR32BP4R7B---  
CDR32BP5R1B---  
CDR32BP5R6B---  
CDR32BP6R2B---  
4.3  
4.7  
5.1  
5.6  
6.2  
B,C,D  
B,C,D  
B,C,D  
B,C,D  
B,C,D  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP431B---  
CDR32BP471B---  
CDR32BP511B---  
CDR32BP561B---  
CDR32BP621B---  
430  
470  
510  
560  
620  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP6R8B---  
CDR32BP7R5B---  
CDR32BP8R2B---  
CDR32BP9R1B---  
CDR32BP100B---  
6.8  
7.5  
8.2  
9.1  
10  
B,C,D  
B,C,D  
B,C,D  
B,C,D  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP681B---  
CDR32BP751B---  
CDR32BP821B---  
CDR32BP911B---  
CDR32BP102B---  
680  
750  
820  
910  
1,000  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP110B---  
CDR32BP120B---  
CDR32BP130B---  
CDR32BP150B---  
CDR32BP160B---  
11  
12  
13  
15  
16  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP112A---  
CDR32BP122A---  
CDR32BP132A---  
CDR32BP152A---  
CDR32BP162A---  
1,100  
1,200  
1,300  
1,500  
1,600  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
50  
50  
50  
50  
50  
CDR32BP180B---  
CDR32BP200B---  
CDR32BP220B---  
CDR32BP240B---  
CDR32BP270B---  
18  
20  
22  
24  
27  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BP182A---  
CDR32BP202A---  
CDR32BP222A---  
1,800  
2,000  
2,200  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
50  
50  
50  
AVX Style 1206/CDR32 (BX)  
CDR32BP300B---  
CDR32BP330B---  
CDR32BP360B---  
CDR32BP390B---  
CDR32BP430B---  
30  
33  
36  
39  
43  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BX472B---  
CDR32BX562B---  
CDR32BX682B---  
CDR32BX822B---  
CDR32BX103B---  
4,700  
5,600  
6,800  
8,200  
10,000  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
100  
100  
CDR32BP470B---  
CDR32BP510B---  
CDR32BP560B---  
CDR32BP620B---  
CDR32BP680B---  
47  
51  
56  
62  
68  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR32BX123B---  
CDR32BX153B---  
CDR32BX183A---  
CDR32BX223A---  
CDR32BX273A---  
12,000  
15,000  
18,000  
22,000  
27,000  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
100  
100  
50  
50  
50  
CDR32BP750B---  
CDR32BP820B---  
CDR32BP910B---  
75  
82  
91  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
100  
100  
100  
CDR32BX333A---  
CDR32BX393A---  
33,000  
39,000  
K,M  
K,M  
BX  
BX  
50  
50  
Add appropriate failure rate  
Add appropriate termination finish  
Capacitance Tolerance  
Add appropriate failure rate  
Add appropriate termination finish  
Capacitance Tolerance  
1 / The complete part number will include additional symbols to indicate capacitance  
tolerance, termination and failure rate level.  
58  
MIL-PRF-55681/Chips  
Military Part Number Identification CDR33/34/35  
CDR33/34/35 to MIL-PRF-55681/9/10/11  
Military  
Type  
Designation 1 /  
Rated temperature WVDC  
and voltage-  
temperature limits  
Military  
Type  
Designation 1 /  
Rated temperature WVDC  
and voltage-  
temperature limits  
Capacitance Capacitance  
in pF tolerance  
Capacitance Capacitance  
in pF tolerance  
AVX Style 1210/CDR33 (BP)  
AVX Style 1812/CDR34 (BX)  
CDR33BP102B---  
CDR33BP112B---  
CDR33BP122B---  
CDR33BP132B---  
CDR33BP152B---  
1,000  
1,100  
1,200  
1,300  
1,500  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
CDR34BX273B---  
CDR34BX333B---  
CDR34BX393B---  
CDR34BX473B---  
CDR34BX563B---  
27,000  
33,000  
39,000  
47,000  
56,000  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
100  
100  
CDR33BP162B---  
CDR33BP182B---  
CDR33BP202B---  
CDR33BP222B---  
CDR33BP242A---  
1,600  
1,800  
2,000  
2,200  
2,400  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
50  
CDR34BX104A---  
CDR34BX124A---  
CDR34BX154A---  
CDR34BX184A---  
100,000  
120,000  
150,000  
180,000  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
50  
50  
50  
50  
CDR33BP272A---  
CDR33BP302A---  
CDR33BP332A---  
2,700  
3,000  
3,300  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
50  
50  
50  
AVX Style 1825/CDR35 (BP)  
CDR35BP472B---  
CDR35BP512B---  
CDR35BP562B---  
CDR35BP622B---  
CDR35BP682B---  
4,700  
5,100  
5,600  
6,200  
6,800  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
AVX Style 1210/CDR33 (BX)  
CDR33BX153B---  
CDR33BX183B---  
CDR33BX223B---  
CDR33BX273B---  
CDR33BX393A---  
15,000  
18,000  
22,000  
27,000  
39,000  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
100  
50  
CDR35BP752B---  
CDR35BP822B---  
CDR35BP912B---  
CDR35BP103B---  
CDR35BP113A---  
7,500  
8,200  
9,100  
10,000  
11,000  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
50  
CDR33BX473A---  
CDR33BX563A---  
CDR33BX683A---  
CDR33BX823A---  
CDR33BX104A---  
47,000  
56,000  
68,000  
82,000  
100,000  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
50  
50  
50  
50  
50  
CDR35BP123A---  
CDR35BP133A---  
CDR35BP153A---  
CDR35BP163A---  
CDR35BP183A---  
12,000  
13,000  
15,000  
16,000  
18,000  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
50  
50  
50  
50  
50  
AVX Style 1812/CDR34 (BP)  
CDR35BP203A---  
CDR35BP223A---  
20,000  
22,000  
F,J,K  
F,J,K  
BP  
BP  
50  
50  
CDR34BP222B---  
CDR34BP242B---  
CDR34BP272B---  
CDR34BP302B---  
CDR34BP332B---  
2,200  
2,400  
2,700  
3,000  
3,300  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
100  
AVX Style 1825/CDR35 (BX)  
CDR35BX563B---  
CDR35BX683B---  
CDR35BX823B---  
CDR35BX104B---  
CDR35BX124B---  
56,000  
68,000  
82,000  
100,000  
120,000  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
100  
100  
100  
100  
100  
CDR34BP362B---  
CDR34BP392B---  
CDR34BP432B---  
CDR34BP472B---  
CDR34BP512A---  
3,600  
3,900  
4,300  
4,700  
5,100  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
100  
100  
100  
100  
50  
CDR35BX154B---  
CDR35BX184A---  
CDR35BX224A---  
CDR35BX274A---  
CDR35BX334A---  
150,000  
180,000  
220,000  
270,000  
330,000  
K,M  
K,M  
K,M  
K,M  
K,M  
BX  
BX  
BX  
BX  
BX  
100  
50  
50  
50  
50  
CDR34BP562A---  
CDR34BP622A---  
CDR34BP682A---  
CDR34BP752A---  
CDR34BP822A---  
5,600  
6,200  
6,800  
7,500  
8,200  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
F,J,K  
BP  
BP  
BP  
BP  
BP  
50  
50  
50  
50  
50  
CDR35BX394A---  
CDR35BX474A---  
390,000  
470,000  
K,M  
K,M  
BX  
BX  
50  
50  
CDR34BP912A---  
CDR34BP103A---  
9,100  
10,000  
F,J,K  
F,J,K  
BP  
BP  
50  
50  
Add appropriate failure rate  
Add appropriate termination finish  
Capacitance Tolerance  
Add appropriate failure rate  
Add appropriate termination finish  
Capacitance Tolerance  
1 / The complete part number will include additional symbols to indicate capacitance  
tolerance, termination and failure rate level.  
59  
Packaging of Chip Components  
Automatic Insertion Packaging  
TAPE & REEL QUANTITIES  
All tape and reel specifications are in compliance with RS481.  
8mm  
12mm  
Paper or Embossed Carrier  
Embossed Only  
0612, 0508, 0805, 1206,  
1210  
1812, 1825  
2220, 2225  
1808  
Paper Only  
0201, 0306, 0402, 0603  
Qty. per Reel/7" Reel  
2,000, 3,000 or 4,000, 10,000, 15,000  
Contact factory for exact quantity  
3,000  
500, 1,000  
Contact factory for exact quantity  
Qty. per Reel/13" Reel  
5,000, 10,000, 50,000  
10,000  
4,000  
Contact factory for exact quantity  
REEL DIMENSIONS  
Tape  
A
Max.  
B*  
Min.  
D*  
Min.  
N
Min.  
W2  
Max.  
C
W1  
W3  
Size(1)  
7.90 Min.  
(0.311)  
+1.5  
14.4  
8.40 -0.0  
8mm  
(0.331 -+00..0059  
)
)
(0.567)  
10.9 Max.  
(0.429)  
330  
(12.992)  
1.5  
(0.059)  
13.0 -+00..2500  
20.2  
(0.795)  
50.0  
(1.969)  
(0.512 +-00..000280  
)
11.9 Min.  
(0.469)  
15.4 Max.  
(0.607)  
+2.0  
18.4  
(0.724)  
12.4 -0.0  
12mm  
(0.488 +-00..0079  
Metric dimensions will govern.  
English measurements rounded and for reference only.  
(1) For tape sizes 16mm and 24mm (used with chip size 3640) consult EIA RS-481 latest revision.  
60  
Embossed Carrier Configuration  
8 & 12mm Tape Only  
10 PITCHES CUMULATIVE  
TOLERANCE ON TAPE  
0.2mm ( 0.008)  
EMBOSSMENT  
P0  
T2  
T
D0  
P2  
DEFORMATION  
BETWEEN  
EMBOSSMENTS  
Chip Orientation  
E1  
A0  
W
F
E2  
TOP COVER  
TAPE  
B1  
B0  
P1  
K0  
T1  
D1 FOR COMPONENTS  
2.00 mm x 1.20 mm AND  
LARGER (0.079 x 0.047)  
CENTER LINES  
OF CAVITY  
S1  
MAX. CAVITY  
SIZE - SEE NOTE 1  
B1 IS FOR TAPE READER REFERENCE ONLY  
INCLUDING DRAFT CONCENTRIC AROUND B0  
User Direction of Feed  
8 & 12mm Embossed Tape  
Metric Dimensions Will Govern  
CONSTANT DIMENSIONS  
Tape Size  
D0  
E
P0  
P2  
S1 Min.  
T Max.  
T1  
+0.10  
8mm  
and  
12mm  
1.50 -0.0  
1.75 ± 0.10  
4.0 ± 0.10  
2.0 ± 0.05  
0.60  
(0.024)  
0.60  
(0.024)  
0.10  
(0.004)  
Max.  
(0.059 +-00..0004  
)
(0.069 ± 0.004) (0.157 ± 0.004) (0.079 ± 0.002)  
VARIABLE DIMENSIONS  
Tape Size  
B1  
Max.  
D1  
Min.  
E2  
Min.  
F
P1  
R
T2  
W
Max.  
A0 B0 K0  
Min.  
See Note 5 See Note 2  
4.35  
(0.171)  
1.00  
6.25  
3.50 ± 0.05  
4.00 ± 0.10  
25.0  
(0.984)  
2.50 Max.  
(0.098)  
8.30  
(0.327)  
8mm  
See Note 1  
See Note 1  
See Note 1  
See Note 1  
(0.039) (0.246) (0.138 ± 0.002) (0.157 ± 0.004)  
8.20  
(0.323)  
1.50  
10.25  
5.50 ± 0.05  
4.00 ± 0.10  
30.0  
(1.181)  
6.50 Max.  
(0.256)  
12.3  
(0.484)  
12mm  
(0.059) (0.404) (0.217 ± 0.002) (0.157 ± 0.004)  
8mm  
1/2 Pitch  
4.35  
(0.171)  
1.00  
6.25  
3.50 ± 0.05  
2.00 ± 0.10  
25.0  
(0.984)  
2.50 Max.  
(0.098)  
8.30  
(0.327)  
(0.039) (0.246) (0.138 ± 0.002) (0.079 ± 0.004)  
12mm  
Double  
Pitch  
8.20  
(0.323)  
1.50  
10.25  
5.50 ± 0.05  
8.00 ± 0.10  
30.0  
(1.181)  
6.50 Max.  
(0.256)  
12.3  
(0.484)  
(0.059) (0.404) (0.217 ± 0.002) (0.315 ± 0.004)  
NOTES:  
2. Tape with or without components shall pass around radius R” without damage.  
1. The cavity defined by A , B0, and K shall be configured to provide the following:  
Surround the component with sufficient clearance such that:  
0
0
3. Bar code labeling (if required) shall be on the side of the reel opposite the round sprocket holes.  
Refer to EIA-556.  
a) the component does not protrude beyond the sealing plane of the cover tape.  
b) the component can be removed from the cavity in a vertical direction without mechanical  
restriction, after the cover tape has been removed.  
4. B1 dimension is a reference dimension for tape feeder clearance only.  
5. If P1 = 2.0mm, the tape may not properly index in all tape feeders.  
c) rotation of the component is limited to 20º maximum (see Sketches D & E).  
d) lateral movement of the component is restricted to 0.5mm maximum (see Sketch F).  
Top View, Sketch "F"  
Component Lateral Movements  
0.50mm (0.020)  
Maximum  
0.50mm (0.020)  
Maximum  
61  
Paper Carrier Configuration  
8 & 12mm Tape Only  
10 PITCHES CUMULATIVE  
TOLERANCE ON TAPE  
0.20mm ( 0.008)  
P0  
D0  
P2  
T
E1  
BOTTOM  
COVER  
TAPE  
TOP  
COVER  
TAPE  
F
W
E2  
B0  
G
T1  
A0  
P1  
CAVITY SIZE  
SEE NOTE 1  
T1  
CENTER LINES  
OF CAVITY  
User Direction of Feed  
8 & 12mm Paper Tape  
Metric Dimensions Will Govern  
CONSTANT DIMENSIONS  
Tape Size  
D0  
E
P0  
P2  
T1  
G. Min.  
R Min.  
+0.10  
1.50 -0.0  
8mm  
and  
12mm  
1.75 ± 0.10  
4.00 ± 0.10  
2.00 ± 0.05  
0.10  
(0.004)  
Max.  
0.75  
(0.030)  
Min.  
25.0 (0.984)  
See Note 2  
Min.  
(0.059 -+00..0004  
)
(0.069 ± 0.004) (0.157 ± 0.004) (0.079 ± 0.002)  
VARIABLE DIMENSIONS  
P1  
Tape Size  
E2 Min.  
F
W
A0 B0  
See Note 1  
T
See Note 4  
+0.30  
8mm  
4.00 ± 0.10  
(0.157 ± 0.004)  
6.25  
(0.246)  
3.50 ± 0.05  
(0.138 ± 0.002)  
8.00 -0.10  
(0.315 +-00..000142  
)
1.10mm  
(0.043) Max.  
for Paper Base  
Tape and  
4.00 ± 0.010  
(0.157 ± 0.004)  
10.25  
(0.404)  
5.50 ± 0.05  
(0.217 ± 0.002) (0.472 ± 0.012)  
12.0 ± 0.30  
12mm  
1.60mm  
(0.063) Max.  
for Non-Paper  
Base Compositions  
+0.30  
8mm  
1/2 Pitch  
2.00 ± 0.05  
(0.079 ± 0.002)  
6.25  
(0.246)  
3.50 ± 0.05  
(0.138 ± 0.002)  
8.00 -0.10  
(0.315 +-00..000142  
)
12mm  
Double  
Pitch  
8.00 ± 0.10  
(0.315 ± 0.004)  
10.25  
(0.404)  
5.50 ± 0.05  
(0.217 ± 0.002) (0.472 ± 0.012)  
12.0 ± 0.30  
NOTES:  
2. Tape with or without components shall pass around radius R” without damage.  
1. The cavity defined by A , B0, and T shall be configured to provide sufficient clearance  
surrounding the component so that:  
0
3. Bar code labeling (if required) shall be on the side of the reel opposite the sprocket  
holes. Refer to EIA-556.  
a) the component does not protrude beyond either surface of the carrier tape;  
b) the component can be removed from the cavity in a vertical direction without  
mechanical restriction after the top cover tape has been removed;  
c) rotation of the component is limited to 20º maximum (see Sketches A & B);  
d) lateral movement of the component is restricted to 0.5mm maximum  
(see Sketch C).  
4. If P1 = 2.0mm, the tape may not properly index in all tape feeders.  
Top View, Sketch "C"  
Component Lateral  
0.50mm (0.020)  
Maximum  
0.50mm (0.020)  
Maximum  
Bar Code Labeling Standard  
AVX bar code labeling is available and follows latest version of EIA-556  
62  
Bulk Case Packaging  
BENEFITS  
BULK FEEDER  
• Easier handling  
• Smaller packaging volume  
(1/20 of T/R packaging)  
• Easier inventory control  
• Flexibility  
Case  
Cassette  
• Recyclable  
Gate  
Shooter  
CASE DIMENSIONS  
Shutter  
Slider  
12mm  
36mm  
Mounter  
Head  
Expanded Drawing  
110mm  
Chips  
Attachment Base  
CASE QUANTITIES  
Part Size  
0402  
0603  
0805  
1206  
Qty.  
(pcs / cassette)  
10,000 (T=.023")  
8,000 (T=.031")  
6,000 (T=.043")  
5,000 (T=.023")  
4,000 (T=.032")  
3,000 (T=.044")  
80,000  
15,000  
63  
Basic Capacitor Formulas  
I. Capacitance (farads)  
XI. Equivalent Series Resistance (ohms)  
.224 K A  
E.S.R. = (D.F.) (Xc) = (D.F.) / (2 π fC)  
English: C =  
TD  
XII. Power Loss (watts)  
.0884 K A  
2
Metric: C =  
Power Loss = (2 π fCV ) (D.F.)  
TD  
XIII. KVA (Kilowatts)  
II. Energy stored in capacitors (J oules, watt - sec)  
-3  
2
KVA = 2 π fCV x 10  
2
1
E = ⁄ CV  
2
XIV. Temperature Characteristic (ppm/°C)  
III. Linear charge of a capacitor (Amperes)  
Ct – C25  
dV  
T.C. =  
x 106  
I = C  
C25 (Tt – 25)  
dt  
XV. Cap Drift (% )  
C1 – C2  
C1  
IV. Total Impedance of a capacitor (ohms)  
2
2
Z = ꢀ  
C.D. =  
x 100  
RS + (X - X )  
C
L
V. Capacitive Reactance (ohms)  
XVI. Reliability of Ceramic Capacitors  
1
x =  
c
L0  
V
X
Tt  
To  
Y
t
=
2 π fC  
(V ) ( )  
L
o
t
VI. Inductive Reactance (ohms)  
XVII. Capacitors in Series (current the same)  
xL = 2 π fL  
Any Number:  
1
C
1
1
C2  
1
---  
=
+
VII. Phase Angles:  
C1  
C
N
T
Ideal Capacitors: Current leads voltage 90°  
Ideal Inductors: Current lags voltage 90°  
Ideal Resistors: Current in phase with voltage  
C1 C2  
C1 + C2  
Two: C  
=
T
XVIII. Capacitors in Parallel (voltage the same)  
= C1 + C2 --- + C  
VIII. Dissipation Factor (% )  
C
T
N
E.S.R.  
D.F.= tan (loss angle) =  
= (2 πfC) (E.S.R.)  
X
XIX. Aging Rate  
c
IX. Power Factor (% )  
A.R. = %D C/decade of time  
P.F. = Sine (loss angle) = Cos (phase angle)  
P.F. = (when less than 10%) = DF  
f
XX. Decibels  
V
1
db = 20 log  
X. Quality Factor (dimensionless)  
V
2
1
D.F.  
Q = Cotan (loss angle) =  
METRIC PREFIXES  
SYMBOLS  
X 10-12  
X 10-9  
X 10-6  
X 10-3  
X 10-1  
X 10+1  
X 10+3  
X 10+6  
X 10+9  
X 10+12  
t
K
A
TD  
V
t
= Dielectric Constant  
f
= frequency  
= Inductance  
= Loss angle  
= Phase angle  
L
= Test life  
Pico  
Nano  
Micro  
Milli  
= Area  
L
V
= Test voltage  
t
= Dielectric thickness  
= Voltage  
V
= Operating voltage  
= Test temperature  
= Operating temperature  
o
Deci  
Deca  
Kilo  
T
t
f
Mega  
Giga  
Tera  
= time  
X & Y = exponent effect of voltage and temp.  
To  
R
s
= Series Resistance  
Lo  
= Operating life  
64  
General Description  
Basic Construction – A multilayer ceramic (MLC) capaci-  
tor is a monolithic block of ceramic containing two sets of  
offset, interleaved planar electrodes that extend to two  
opposite surfaces of the ceramic dielectric. This simple  
structure requires a considerable amount of sophistication,  
both in material and manufacture, to produce it in the quality  
and quantities needed in today’s electronic equipment.  
Electrode  
Ceramic Layer  
End Terminations  
Terminated  
Edge  
Terminated  
Edge  
Margin  
Electrodes  
Multilayer Ceramic Capacitor  
Figure 1  
Formulations – Multilayer ceramic capacitors are available  
in both Class 1 and Class 2 formulations. Temperature  
compensating formulation are Class 1 and temperature  
stable and general application formulations are classified  
as Class 2.  
Class 2 – EIA Class 2 capacitors typically are based on the  
chemistry of barium titanate and provide a wide range of  
capacitance values and temperature stability. The most  
commonly used Class 2 dielectrics are X7R and Y5V. The  
X7R provides intermediate capacitance values which vary  
only ±15% over the temperature range of -55°C to 125°C. It  
finds applications where stability over a wide temperature  
range is required.  
Class 1 – Class 1 capacitors or temperature compensating  
capacitors are usually made from mixtures of titanates  
where barium titanate is normally not a major part of the  
mix. They have predictable temperature coefficients and  
in general, do not have an aging characteristic. Thus they  
are the most stable capacitor available. The most popular  
Class 1 multilayer ceramic capacitors are C0G (NP0)  
temperature compensating capacitors (negative-positive  
0 ppm/°C).  
The Y5V provides the highest capacitance values and is  
used in applications where limited temperature changes are  
expected. The capacitance value for Y5V can vary from  
22% to -82% over the -30°C to 85°C temperature range.  
All Class 2 capacitors vary in capacitance value under the  
influence of temperature, operating voltage (both AC and  
DC), and frequency. For additional information on perfor-  
mance changes with operating conditions, consult AVX’s  
software, SpiCap.  
65  
General Description  
Effects of Voltage – Variations in voltage have little effect  
on Class 1 dielectric but does affect the capacitance and  
dissipation factor of Class 2 dielectrics. The application of  
DC voltage reduces both the capacitance and dissipation  
factor while the application of an AC voltage within a  
reasonable range tends to increase both capacitance and  
dissipation factor readings. If a high enough AC voltage is  
applied, eventually it will reduce capacitance just as a DC  
voltage will. Figure 2 shows the effects of AC voltage.  
Table 1: EIA and MIL Temperature Stable and General  
Application Codes  
EIA CODE  
Percent Capacity Change Over Temperature Range  
RS198  
Temperature Range  
X7  
X6  
X5  
Y5  
Z5  
-55°C to +125°C  
-55°C to +105°C  
-55°C to +85°C  
-30°C to +85°C  
+10°C to +85°C  
Cap. Change vs. A.C. Volts  
X7R  
Code  
Percent Capacity Change  
50  
40  
30  
20  
D
E
F
P
R
S
±3.3%  
±4.7%  
±7.5%  
±10%  
±15%  
±22%  
10  
0
T
U
V
+22% , -33%  
+22% , - 56%  
+22% , -82%  
12.5  
25  
37.5  
50  
EXAMPLE – A capacitor is desired with the capacitance value at 25°C  
to increase no more than 7.5% or decrease no more than 7.5% from  
-30°C to +85°C. EIA Code will be Y5F.  
Volts AC at 1.0 KHz  
Figure 2  
Capacitor specifications specify the AC voltage at which to  
measure (normally 0.5 or 1 VAC) and application of the  
wrong voltage can cause spurious readings. Figure 3 gives  
the voltage coefficient of dissipation factor for various AC  
voltages at 1 kilohertz. Applications of different frequencies  
will affect the percentage changes versus voltages.  
MIL CODE  
Symbol  
Temperature Range  
A
B
C
-55°C to +85°C  
-55°C to +125°C  
-55°C to +150°C  
D.F. vs. A.C. Measurement Volts  
X7R  
Cap. Change  
Zero Volts  
Cap. Change  
Rated Volts  
Symbol  
10.0  
Curve 1 - 100 VDC Rated Capacitor  
Curve 2 - 50 VDC Rated Capacitor  
Curve 3 - 25 VDC Rated Capacitor  
Curve 3  
Curve 2  
R
S
W
X
Y
Z
+15% , -15%  
+22% , -22%  
+22% , -56%  
+15% , -15%  
+30% , -70%  
+20% , -20%  
+15% , -40%  
+22% , -56%  
+22% , -66%  
+15% , -25%  
+30% , -80%  
+20% , -30%  
8.0  
6.0  
4.0  
Curve 1  
2.0  
0
Temperature characteris tic is s pecified by combining range and  
change symbols, for example BR or AW. Specification slash sheets  
indicate the characteristic applicable to a given style of capacitor.  
.5  
1.0  
1.5  
2.0  
2.5  
AC Measurement Volts at 1.0 KHz  
In specifying capacitance change with temperature for Class  
2 materials, EIA expresses the capacitance change over an  
operating temperature range by a 3 symbol code. The first  
symbol represents the cold temperature end of the temper-  
ature range, the second represents the upper limit of the  
operating temperature range and the third symbol repre-  
s e nts the c a p a c ita nc e c ha nge a llowe d ove r the  
operating temperature range. Table 1 provides a detailed  
explanation of the EIA system.  
Figure 3  
Typical effect of the application of DC voltage is shown in  
Figure 4. The voltage coefficient is more pronounced for  
higher K dielectrics. These figures are shown for room tem-  
perature conditions. The combination characteristic known  
as voltage temperature limits which shows the effects of  
rated voltage over the operating temperature range is  
shown in Figure 5 for the military BX characteristic.  
66  
General Description  
tends to de-age capacitors and is why re-reading of capaci-  
tance after 12 or 24 hours is allowed in military specifica-  
tions after dielectric strength tests have been performed.  
Typical Cap. Change vs. D.C. Volts  
X7R  
2.5  
0
Typical Curve of Aging Rate  
X7R  
+1.5  
0
-2.5  
-5  
-7.5  
-10  
-1.5  
25%  
50%  
75%  
100%  
-3.0  
-4.5  
Percent Rated Volts  
Figure 4  
Typical Cap. Change vs. Temperature  
X7R  
-6.0  
-7.5  
+20  
+10  
0
1
10  
100 1000 10,000 100,000  
Hours  
0VDC  
Characteristic Max. Aging Rate %/Decade  
None  
2
7
C0G (NP0)  
X7R, X5R  
Y5V  
-10  
-20  
-30  
Figure 6  
Effe c ts of Fre que nc y Frequency affects capacitance  
and impedance characteristics of capacitors. This effect is  
much more pronounced in high dielectric constant ceramic  
formulation than in low K formulations. AVX’s SpiCap soft-  
ware generates impedance, ESR, series inductance, series  
resonant frequency and capacitance all as functions of  
frequency, temperature and DC bias for standard chip sizes  
and styles. It is available free from AVX and can be down-  
loaded for free from AVX website: www.avx.com.  
-55 -35 -15 +5 +25 +45 +65 +85 +105 +125  
Temperature Degrees Centigrade  
Figure 5  
Effe c ts of Tim e – Class 2 ceramic capacitors change  
capacitance and dissipation factor with time as well as tem-  
perature, voltage and frequency. This change with time is  
known as aging. Aging is caused by a gradual re-alignment  
of the crystalline structure of the ceramic and produces an  
exponential loss in capacitance and decrease in dissipation  
factor versus time. A typical curve of aging rate for semi-  
stable ceramics is shown in Figure 6.  
If a Class 2 ceramic capacitor that has been sitting on the  
shelf for a period of time, is heated above its curie point,  
1
(125°C for 4 hours or 150°C for ⁄  
2
hour will suffice) the part  
will de-age and return to its initial capacitance and dissi-  
pation factor readings. Because the capacitance changes  
rapidly, immediately after de-aging, the basic capacitance  
measurements are normally referred to a time period some-  
time after the de-aging process. Various manufacturers use  
different time bases but the most popular one is one day  
or twenty-four hours after last heat.” Change in the aging  
curve can be caused by the application of voltage and  
other stresses. The possible changes in capacitance due to  
de-aging by heating the unit explain why capacitance  
changes are allowed after test, such as temperature cycling,  
moisture resistance, etc., in MIL specs. The application of  
high voltages such as dielectric withstanding voltages also  
67  
General Description  
Effe c ts o f Me c ha nic a l Stre s s High K” dielectric  
ceramic capacitors exhibit some low level piezoelectric  
reactions under mechanical stress. As a general statement,  
the piezoelectric output is higher, the higher the dielectric  
constant of the ceramic. It is desirable to investigate this  
effect before using high K” dielectrics as coupling capaci-  
tors in extremely low level applications.  
Energy Stored – The energy which can be stored in a  
capacitor is given by the formula:  
2
E = 1⁄  
2
CV  
E = energy in joules (watts-sec)  
V = applied voltage  
C = capacitance in farads  
Reliability – Historically ceramic capacitors have been one  
of the most reliable types of capacitors in use today.  
The approximate formula for the reliability of a ceramic  
capacitor is:  
Potential Change – A capacitor is a reactive component  
which reacts against a change in potential across it. This is  
shown by the equation for the linear charge of a capacitor:  
Lo  
Lt  
V
X
Tt  
Y
t
=
ꢁ ꢁ  
V ꢁ  
T
o
o
dV  
dt  
Iideal  
=
C
where  
Lo = operating life  
Lt = test life  
Tt = test temperature and  
To = operating temperature  
in °C  
where  
I = Current  
C = Capacitance  
V = test voltage  
t
Vo = operating voltage  
X,Y = see text  
dV/dt = Slope of voltage transition across capacitor  
Thus an infinite current would be required to instantly  
change the potential across a capacitor. The amount of  
current a capacitor can sink” is determined by the above  
equation.  
Historically for ceramic capacitors exponent X has been  
considered as 3. The exponent Y for temperature effects  
typically tends to run about 8.  
Equivalent Circuit – A capacitor, as a practical device,  
exhibits not only capacitance but also resistance and  
inductance. A simplified schematic for the equivalent circuit  
is:  
A capacitor is a component which is capable of storing  
electrical energy. It consists of two conductive plates (elec-  
trodes) separated by insulating material which is called the  
dielectric. A typical formula for determining capacitance is:  
C = Capacitance  
L = Inductance  
Rs = Series Resistance  
Rp = Parallel Resistance  
.224 KA  
C =  
t
R P  
C = capacitance (picofarads)  
K = dielectric constant (Vacuum = 1)  
A = area in square inches  
t = separation between the plates in inches  
(thickness of dielectric)  
L
R S  
.224 = conversion constant  
C
(.0884 for metric system in cm)  
Reactance – Since the insulation resistance (Rp) is normal-  
Capacitance – The standard unit of capacitance is the  
farad. A capacitor has a capacitance of 1 farad when 1  
coulomb charges it to 1 volt. One farad is a very large unit  
and most capacitors have values in the micro (10-6), nano  
(10-9) or pico (10-12) farad level.  
ly very high, the total impedance of a capacitor is:  
2
Z = R2S + (X - X )  
C
L
where  
Z = Total Impedance  
Dielectric Constant – In the formula for capacitance given  
above the dielectric constant of a vacuum is arbitrarily cho-  
sen as the number 1. Dielectric constants of other materials  
are then compared to the dielectric constant of a vacuum.  
Rs = Series Resistance  
XC = Capacitive Reactance =  
1
2 π fC  
XL = Inductive Reactance = 2 π fL  
Dielectric Thickness – Capacitance is indirectly propor-  
tional to the separation between electrodes. Lower voltage  
requirements mean thinner dielectrics and greater capaci-  
tance per volume.  
The variation of a capacitor’s impedance with frequency  
determines its effectiveness in many applications.  
Phas e Angle – Power Factor and Dissipation Factor are  
often confused since they are both measures of the loss in  
a capacitor under AC application and are often almost  
identical in value. In a “perfect” capacitor the current in the  
capacitor will lead the voltage by 90°.  
Area – Capacitance is directly proportional to the area of  
the electrodes. Since the other variables in the equation are  
usually set by the performance desired, area is the easiest  
parameter to modify to obtain a specific capacitance within  
a material group.  
68  
General Description  
di  
dt  
The  
seen in current microprocessors can be as high as  
I (Ideal)  
0.3 A/ns, and up to 10A/ns. At 0.3 A/ns, 100pH of parasitic  
inductance can cause a voltage spike of 30mV. While this  
does not sound very drastic, with the Vcc for microproces-  
sors decreasing at the current rate, this can be a fairly large  
percentage.  
I (Actual)  
Loss  
Angle  
Phase  
Angle  
Another important, often overlooked, reason for knowing  
the parasitic inductance is the calculation of the resonant  
frequency. This can be important for high frequency, by-  
pass capacitors, as the resonant point will give the most  
signal attenuation. The resonant frequency is calculated  
from the simple equation:  
f
V
IRs  
In practice the current leads the voltage by some other  
phase angle due to the series resistance RS. The comple-  
ment of this angle is called the loss angle and:  
fres =  
1
2LC  
Ins ula tio n Re s is ta nc e Insulation Resistance is the  
resistance measured across the terminals of a capacitor  
and consists principally of the parallel resistance RP shown  
in the equivalent circuit. As capacitance values and hence  
the area of dielectric increases, the I.R. decreases and  
hence the product (C x IR or RC) is often specified in ohm  
faradsor more commonly megohm-microfarads. Leakage  
current is determined by dividing the rated voltage by IR  
(Ohms Law).  
Power Factor (P.F.) = Cos f or Sine  
Dissipation Factor (D.F.) = tan ꢃ  
for small values of the tan and sine are essentially equal  
which has led to the common interchangeability of the two  
terms in the industry.  
Eq uiva le nt Se rie s Re s is ta nc e The term E.S.R. or  
Equivalent Series Resistance combines all losses both  
series and parallel in a capacitor at a given frequency so  
that the equivalent circuit is reduced to a simple R-C series  
connection.  
Dielectric Strength – Dielectric Strength is an expression  
of the ability of a material to withstand an electrical stress.  
Although dielectric strength is ordinarily expressed in volts, it  
is actually dependent on the thickness of the dielectric and  
thus is also more generically a function of volts/mil.  
Dielectric Abs orption – A capacitor does not discharge  
instantaneously upon application of a short circuit, but  
drains gradually after the capacitance proper has been dis-  
charged. It is common practice to measure the dielectric  
absorption by determining the reappearing voltage” which  
appears across a capacitor at some point in time after it has  
been fully discharged under short circuit conditions.  
E.S.R.  
C
Dissipation Factor – The DF/PF of a capacitor tells what  
percent of the apparent power input will turn to heat in the  
capacitor.  
Corona – Corona is the ionization of air or other vapors  
which causes them to conduct current. It is especially  
prevalent in high voltage units but can occur with low voltages  
as well where high voltage gradients occur. The energy  
discharged degrades the performance of the capacitor and  
can in time cause catastrophic failures.  
E.S.R.  
XC  
Dissipation Factor =  
= (2 π fC) (E.S.R.)  
The watts loss are:  
2
Watts loss = (2 π fCV ) (D.F.)  
Very low values of dissipation factor are expressed as their  
reciprocal for convenience. These are called the Q” or  
Quality factor of capacitors.  
Parasitic Inductance – The parasitic inductance of capac-  
itors is becoming more and more important in the decou-  
pling of todays high speed digital systems. The relationship  
between the inductance and the ripple voltage induced on  
the DC voltage line can be seen from the simple inductance  
equation:  
di  
dt  
V = L  
69  
Surface Mounting Guide  
MLC Chip Capacitors  
REFLOW SOLDERING  
Case Size  
0402  
D1  
D2  
D3  
D4  
D5  
D2  
1.70 (0.07)  
2.30 (0.09)  
3.00 (0.12)  
4.00 (0.16)  
4.00 (0.16)  
5.60 (0.22)  
5.60 (0.22)  
5.60 (0.22)  
6.60 (0.26)  
6.60 (0.26)  
0.60 (0.02)  
0.80 (0.03)  
1.00 (0.04)  
1.00 (0.04)  
1.00 (0.04)  
1.00 (0.04)  
1.00 (0.04))  
1.00 (0.04)  
1.00 (0.04)  
1.00 (0.04)  
0.50 (0.02)  
0.70 (0.03)  
1.00 (0.04)  
2.00 (0.09)  
2.00 (0.09)  
3.60 (0.14)  
3.60 (0.14)  
3.60 (0.14)  
4.60 (0.18)  
4.60 (0.18)  
0.60 (0.02)  
0.80 (0.03)  
1.00 (0.04)  
1.00 (0.04)  
1.00 (0.04)  
1.00 (0.04)  
1.00 (0.04)  
1.00 (0.04)  
1.00 (0.04)  
1.00 (0.04)  
0.50 (0.02)  
0.75 (0.03)  
1.25 (0.05)  
1.60 (0.06)  
2.50 (0.10)  
2.00 (0.08)  
3.00 (0.12)  
6.35 (0.25)  
5.00 (0.20)  
6.35 (0.25)  
0603  
0805  
1206  
1210  
1808  
1812  
1825  
2220  
D1  
D3  
D4  
D5  
2225  
Dimensions in millimeters (inches)  
Component Pad Design  
Component pads should be designed to achieve good  
solder filets and minimize component movement during  
reflow soldering. Pad designs are given below for the most  
common sizes of multilayer ceramic capacitors for both  
wave and reflow soldering. The basis of these designs is:  
• Pad width equal to component width. It is permissible to  
decrease this to as low as 85% of component width but it  
is not advisable to go below this.  
• Pad overlap 0.5mm beneath component.  
• Pad extension 0.5mm beyond components for reflow and  
1.0mm for wave soldering.  
WAVE SOLDERING  
D2  
Case Size  
0603  
D1  
D2  
D3  
D4  
D5  
D1  
D3  
D4  
3.10 (0.12)  
4.00 (0.15)  
5.00 (0.19)  
1.20 (0.05)  
1.50 (0.06)  
1.50 (0.06)  
0.70 (0.03)  
1.00 (0.04)  
2.00 (0.09)  
1.20 (0.05)  
1.50 (0.06)  
1.50 (0.06)  
0.75 (0.03)  
1.25 (0.05)  
1.60 (0.06)  
0805  
1206  
Dimensions in millimeters (inches)  
D5  
Component Spacing  
Preheat & Soldering  
For wave soldering components, must be spaced sufficiently  
far apart to avoid bridging or shadowing (inability of solder  
to penetrate properly into small spaces). This is less impor-  
tant for reflow soldering but sufficient space must be  
allowed to enable rework should it be required.  
The rate of preheat should not exceed 4°C/second to  
prevent thermal shock. A better maximum figure is about  
2°C/second.  
For capacitors size 1206 and below, with a maximum  
thickness of 1.25mm, it is generally permissible to allow a  
temperature differential from preheat to soldering of 150°C.  
In all other cases this differential should not exceed 100°C.  
For further specific application or process advice, please  
consult AVX.  
Cleaning  
1.5mm (0.06)  
1mm (0.04)  
Care should be taken to ensure that the capacitors are  
thoroughly cleaned of flux residues especially the space  
beneath the capacitor. Such residues may otherwise  
become conductive and effectively offer a low resistance  
bypass to the capacitor.  
1mm (0.04)  
Ultrasonic cleaning is permissible, the recommended  
conditions being 8 Watts/litre at 20-45 kHz, with a process  
cycle of 2 minutes vapor rinse, 2 minutes immersion in the  
ultrasonic solvent bath and finally 2 minutes vapor rinse.  
70  
Surface Mounting Guide  
MLC Chip Capacitors  
Wave  
APPLICATION NOTES  
300  
Storage  
Preheat  
Natural  
Cooling  
Good solderability is maintained for at least twelve months,  
provided the components are stored in their “as received”  
packaging at less than 40°C and 70% RH.  
250  
200  
150  
100  
50  
T
Solderability  
230°C  
to  
Terminations to be well soldered after immersion in a 60/40  
tin/lead solder bath at 235 ± 5°C for 2 ± 1 seconds.  
250°C  
Leaching  
Terminations will resist leaching for at least the immersion  
times and conditions shown below.  
Solder  
Tin/Lead/Silver Temp. °C  
60/40/0 260 ± 5  
Solder  
Immersion Time  
Seconds  
0
Termination Type  
1 to 2 min  
3 sec. max  
Nickel Barrier  
30 ± 1  
(Preheat chips before soldering)  
T/maximum 150°C  
Recommended Soldering Profiles  
Lead-Free Wave Soldering  
The recommended peak temperature for lead-free wave  
soldering is 250°C-260°C for 3-5 seconds. The other para-  
meters of the profile remains the same as above.  
Reflow  
300  
Natural  
Cooling  
Preheat  
The following should be noted by customers changing from  
lead based systems to the new lead free pastes.  
250  
200  
a) The visual standards used for evaluation of solder joints  
will need to be modified as lead free joints are not as  
bright as with tin-lead pastes and the fillet may not be as  
large.  
220°C  
to  
250°C  
150  
100  
50  
b) Resin color may darken slightly due to the increase in  
temperature required for the new pastes.  
c) Lead-free solder pastes do not allow the same self align-  
ment as lead containing systems. Standard mounting  
pads are acceptable, but machine set up may need to be  
modified.  
0
1min  
(Minimize soldering time)  
10 sec. max  
1min  
General  
Surface mounting chip multilayer ceramic capacitors  
are designed for soldering to printed circuit boards or other  
substrates. The construction of the components is such that  
they will withstand the time/temperature profiles used in both  
wave and reflow soldering methods.  
Lead-Free Reflow Profile  
300  
250  
200  
150  
100  
Handling  
Chip multilayer ceramic capacitors should be handled with  
care to avoid damage or contamination from perspiration  
and skin oils. The use of tweezers or vacuum pick ups  
is strongly recommended for individual components. Bulk  
handling should ensure that abrasion and mechanical shock  
are minimized. Taped and reeled components provides the  
ideal medium for direct presentation to the placement  
machine. Any mechanical shock should be minimized during  
handling chip multilayer ceramic capacitors.  
50  
0
0
50  
100  
150  
200  
250  
300  
Time (s)  
• Pre-heating: 150°C 15°C / 60-90s  
• Max. Peak Gradient 2.5°C/s  
• Peak Temperature: 245°C 5°C  
• Time at >230°C: 40s Max.  
Preheat  
It is important to avoid the possibility of thermal shock during  
soldering and carefully controlled preheat is therefore  
required. The rate of preheat should not exceed 4°C/second  
71  
Surface Mounting Guide  
MLC Chip Capacitors  
and a target figure 2°C/second is recommended. Although  
an 80°C to 120°C temperature differential is preferred,  
recent developments allow a temperature differential  
between the component surface and the soldering temper-  
ature of 150°C (Maximum) for capacitors of 1210 size and  
below with a maximum thickness of 1.25mm. The user is  
cautioned that the risk of thermal shock increases as chip  
size or temperature differential increases.  
POST SOLDER HANDLING  
Once SMP components are soldered to the board, any  
bending or flexure of the PCB applies stresses to the sol-  
dered joints of the components. For leaded devices, the  
stresses are absorbed by the compliancy of the metal leads  
and generally dont result in problems unless the stress is  
large enough to fracture the soldered connection.  
Ceramic capacitors are more susceptible to such stress  
because they dont have compliant leads and are brittle in  
nature. The most frequent failure mode is low DC resistance  
or short circuit. The second failure mode is significant loss  
of capacitance due to severing of contact between sets of  
the internal electrodes.  
Soldering  
Mildly activated rosin fluxes are preferred. The minimum  
amount of solder to give a good joint should be used.  
Excessive solder can lead to damage from the stresses  
caus ed by the difference in coefficients of expans ion  
between solder, chip and substrate. AVX terminations are  
suitable for all wave and reflow soldering systems. If hand  
soldering cannot be avoided, the preferred technique is the  
utilization of hot air soldering tools.  
Cracks caused by mechanical flexure are very easily identi-  
fied and generally take one of the following two general  
forms:  
Cooling  
Natural cooling in air is preferred, as this minimizes stresses  
within the soldered joint. When forced air cooling is used,  
cooling rate should not exceed 4°C/second. Quenching  
is not recommended but if used, maximum temperature  
differentials should be observed according to the preheat  
conditions above.  
Cleaning  
Type A:  
Flux residues may be hygroscopic or acidic and must be  
removed. AVX MLC capacitors are acceptable for use with  
all of the solvents described in the specifications MIL-STD-  
202 and EIA-RS-198. Alcohol based solvents are acceptable  
and properly controlled water cleaning systems are also  
acceptable. Many other solvents have been proven successful,  
and most solvents that are acceptable to other components  
on circuit assemblies are equally acceptable for use with  
ceramic capacitors.  
Angled crack between bottom of device to top of solder joint.  
Type B:  
Fracture from top of device to bottom of device.  
Mechanical cracks are often hidden underneath the termi-  
nation and are difficult to see externally. However, if one end  
termination falls off during the removal process from PCB,  
this is one indication that the cause of failure was excessive  
mechanical stress due to board warping.  
72  
Surface Mounting Guide  
MLC Chip Capacitors  
COMMON CAUSES OF  
REWORKING OF MLCs  
MECHANICAL CRACKING  
Thermal shock is common in MLCs that are manually  
attached or reworked with a soldering iron. AVX strongly  
recommends that any reworking of MLCs be done with hot  
air reflow rather than soldering irons. It is practically impossi-  
ble to cause any thermal shock in ceramic capacitors when  
using hot air reflow.  
The most common source for mechanical stress is board  
depanelization equipment, such as manual breakapart, v-  
cutters and shear presses. Improperly aligned or dull cutters  
may cause torqueing of the PCB resulting in flex stresses  
being transmitted to components near the board edge.  
Another common source of flexural stress is contact during  
parametric testing when test points are probed. If the PCB  
is allowed to flex during the test cycle, nearby ceramic  
capacitors may be broken.  
However direct contact by the soldering iron tip often caus-  
es thermal cracks that may fail at a later date. If rework by  
soldering iron is absolutely necessary, it is recommended  
that the wattage of the iron be less than 30 watts and the  
tip temperature be <300ºC. Rework should be performed  
by applying the solder iron tip to the pad and not directly  
contacting any part of the ceramic capacitor.  
A third common source is board to board connections at  
vertical connectors where cables or other PCBs are con-  
nected to the PCB. If the board is not supported during the  
plug/unplug cycle, it may flex and cause damage to nearby  
components.  
Special care should also be taken when handling large (>6"  
on a side) PCBs since they more easily flex or warp than  
smaller boards.  
Solder Tip  
Solder Tip  
Preferred Method - No Direct Part Contact  
Poor Method - Direct Contact with Part  
PCB BOARD DESIGN  
To avoid many of the handling problems, AVX recommends that MLCs be located at least .2" away from nearest edge of  
board. However when this is not possible, AVX recommends that the panel be routed along the cut line, adjacent to where the  
MLC is located.  
No Stress Relief for MLCs  
Routed Cut Line Relieves Stress on MLC  
73  
USA  
AVX Myrtle Beach, SC  
Corporate Offices  
AVX North Central, IN  
AVX Southwest, AZ  
Tel: 602-678-0384  
FAX: 602-678-0385  
AVX Southeast, GA  
Tel: 404-608-8151  
FAX: 770-972-0766  
Tel: 317-848-7153  
FAX: 317-844-9314  
Tel: 843-448-9411  
FAX: 843-448-1943  
AVX Mid/Pacific, CA  
Tel: 510-661-4100  
FAX: 510-661-4101  
AVX South Central, TX  
AVX Canada  
Tel: 905-238-3151  
FAX: 905-238-0319  
AVX Northwest, WA  
Tel: 360-699-8746  
FAX: 360-699-8751  
Tel: 972-669-1223  
FAX: 972-669-2090  
EUROPE  
AVX Limited, England  
AVX S.A., France  
Tel: ++33 (1) 69-18-46-00  
FAX: ++33 (1) 69-28-73-87  
AVX srl, Italy  
Tel: ++390 (0)2 614-571  
FAX: ++390 (0)2 614-2576  
European Headquarters  
Tel: ++44 (0) 1252-770000  
FAX: ++44 (0) 1252-770001  
AVX GmbH, Germany  
Tel: ++49 (0) 8131-9004-0  
FAX: ++49 (0) 8131-9004-44  
AVX Czech Republic  
Tel: ++420 465-358-111  
FAX: ++420 465-323-010  
AVX/ELCO, England  
Tel: ++44 (0) 1638-675000  
FAX: ++44 (0) 1638-675002  
ASIA-PACIFIC  
AVX/Kyocera, Singapore  
Asia-Pacific Headquarters  
AVX/Kyocera, Taiwan  
Tel: (886) 2-2698-8778  
FAX: (886) 2-2698-8777  
Kyocera, Japan - KDP  
Tel: (81) 75-604-3424  
FAX: (81) 75-604-3425  
Tel: (65) 6286-7555  
FAX: (65) 6488-9880  
AVX/Kyocera, Shanghai, China  
AVX/Kyocera, Malaysia  
AVX/Kyocera, Hong Kong  
Tel: 86-21 6886 1000  
FAX: 86-21 6886 1010  
Tel: (60) 4-228-1190  
FAX: (60) 4-228-1196  
Tel: (852) 2-363-3303  
FAX: (852) 2-765-8185  
AVX/Kyocera, Tianjin, China  
Elco, Japan  
Tel: 86-22 2576 0098  
FAX: 86-22 2576 0096  
Tel: 045-943-2906/7  
FAX: 045-943-2910  
AVX/Kyocera, Korea  
Tel: (82) 2-785-6504  
FAX: (82) 2-784-5411  
Kyocera, Japan - AVX  
Tel: (81) 75-604-3426  
FAX: (81) 75-604-3425  
Contact:  
A KYOCERA GROUP COMPANY  
http://www.avx.com  
S-MLCC10M1204-C  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9137LG

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY

SI9122E

500-kHz Half-Bridge DC/DC Controller with Integrated Secondary Synchronous Rectification Drivers

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
VISHAY